Naprendszerünkben a bolygónk és csillagunk közti közel 150 000 000 km-es távolságot két bolygószomszédunk: a Merkúr és a Vénusz pályája is keresztezi. Mindketten a Naprendszerünk belső bolygói, bolygószomszédaink, tanulmányozásuk (leginkább a Merkúr esetében) mégis inkább nagyrészt csak távcsöveinken keresztül zajlik. Az okok, amelyek miatt e két bolygó kutatása háttérbe szorult a Mars, vagy még inkább a Hold kutatásával szemben: egyrészt a Nap körüli pályájuk elérésének technikai nehézségei (főként megint csak a Merkúr esetében), valamint a bolygón uralkodó szélsőséges körülmények (főként a Vénusz esetében). Mindkét ok eddig nehézséget állított a kutatók és mérnökök elé, ám remélhetőleg a technikai fejlődés, a 21. század új ötvözetei és technológiái, – valamint természetesen a szándék – megnyitják az utat a jobb megismerhetőségük felé. A múlt, a jelen és a jövő űreszközeit vesszük most sorra, melyek (egyik rész-) feladata e két bolygó kutatása.
Az űrszondák
E téma taglalásánál nem mehetünk el a fogalom megtárgyalása mellett: az űrszondák olyan személyzet nélküli űreszközök, melyek célja hogy (eddig főleg Naprendszerünkben található) bolygók/holdak felszínét, összetételét, légkörét, jelenségeit, stb. valamilyen formában vizsgálják.
Típusaikat/funkciójukat tekintve lehetnek:
-
elrepülő egységek (flybyerek): elrepülő egységnek, elrepülés jellegű küldetésűnek azt az űrszondát nevezzük, mely lassítás és orbitális pályára állás nélkül halad el egy-egy égitest mellett, annak relatív közelségében, miközben műszereivel adatot gyűjt róla. Egy-egy csillag, bolygó vagy hold ilyen módon történő megfigyelése általában csak részfeladat a szonda útja során. Az elhaladás általában nem kizárólag tudományos célú: az irányítás azért tervezi a szonda pályáját közel egy-egy bolygóhoz, hogy annak tömegvonzását kihasználva ún. gravitációs hintamanővert hajtson végre, mely során az űreszköz sebességet nyer és irányt is változtat. Egy-egy ilyen művelet alkalmazásával kevésbé energiaigényes pályán juthatunk el távolabbi égitestekhez is, így az elrepülés célja elsődlegesen a hintamanőver, és másodlagosan a tudományos adatgyűjtés és megfigyelés. Erre példa az 1973-ban indított Pioneer-11 bolygóközi űrszonda, mely a Jupiter körüli hintamanőverrel jutott el a Szaturnusz közelébe. Végső célja, hogy a Sas csillagkép irányába haladva, 4 millió év múlva megközelítse a legközelebbi csillagokat.
-
keringő egységek (orbiterek): a keringő egységek orbitális pályára állva térképezik fel a bolygót vagy épp kommunikációs átjátszóegységként funkcionálnak a földi irányítás, és a bolygón lévő landoló egységek között. Hordozhatnak kamerát, amely a látható és infravörös/röntgen/stb tartományban készít képeket; spektrométert, az atmoszféra jellemzőinek vizsgálatához; radiométert, a hőmérséklet vizsgálatához; magnetométert, a mágneses tér vizsgálatához; pordetektort, a mikrometeorokat és a bolygóközi térben lévő porrészecskéket vizsgálatához; radart, a domborzat vizsgálatához; sugárzásmérőt, a bolygó által kibocsátott sugárzás vizsgálatához; részecskecsapdát; neutrondetektort, stb. Erre példa a Hold körül keringő LRO (Lunar Reconnaissance Orbiter), mely 2009 óta gyűjti az adatokat elsősorban a későbbi holdexpedíciók számára (potenciális leszállóhelyek keresése és feltérképezése, a Holdon található, emberes holdexpedíciók esetén felhasználható erőforrások keresése és feltérképezése, a holdi sugárzási környezet vizsgálata)
-
becsapódó egységek (impaktorok/penetrátorok) és légköri szondák: a becsapódó egységek az égitest felszínére irányítva, azt fékezés nélkül közelítik meg. Műszereik az utolsó másodpercig dolgoznak, és folyamatosan adatokat küldenek az irányítóközpont felé. A történelem első impaktora a 1959 szeptemberében felbocsátott szovjet Luna-2 volt. Tervezett feladata a Hold megközelítése/eltalálása, a kozmikus sugárzás, a napszél, a mikrometeoritok, az interplanetáris anyag és a Hold mágneses terének vizsgálata volt. Becsapódását akkoriban a MTA Csillagvizsgáló Intézetében, valamint a Bajai Obszervatóriumban is detektálták.
A légköri szondák a becsapódó egységek azon fajtái, melyek légkörrel rendelkező bolygók, gázóriások atmoszférájába érve gyűjtenek adatot annak összetételéről, végül a felszínbe csapódva, vagy a elégve/nyomás által összeroppantva fejezik be pályafutásukat. Erre példa a Galileo légköri szonda (Galileo probe), mely az azonos nevű Galileo szondáról leválva lépett be a Jupiter légkörébe és a 150 km-es ereszkedése során 58 percnyi adatot gyűjtött a helyi időjárásról, majd túlhevült a légkörben és elégett.
-
leszálló egységek (landerek): a leszálló egységek olyan űrszondák, melyek az égitest felszínén hajtóművük/hőpajzsuk/ejtőernyőik/légzsákjaik révén „puha” landolást valósítanak meg. Landolásuk után földtani, meteorológiai, szeizmológiai, fotometriai, stb méréseket tudnak végezni, valamint lehetőség szerint képesek talajminta Földre való visszajuttatására is. Remek példa erre az amerikai Viking-1 űrszonda, mely 1976-ban landolt a Mars felszínén.
Távolabbi desztinációk esetén a kutatást végző űrügynökség úgy tervezheti meg az űrszondát, hogy az tartalmaz egy keringő és egy leszálló egységet is, az égitest felszíni és orbitális pályán való egyidejű, költséghatékonyabb tanulmányozása érdekében.
-
felszíni mozgó egységek (roverek): a roverek mozgásra képes leszálló egységek. Leszállásuk után a földi irányítóközpont vezérli őket, utasítások folyamatos küldésével, általában az égitest körül keringő szondák, műholdak adattovábbítási funkciói segítségével. Az eddigi legsikeresebb rover az Opportunity, mely 2012-ben landolt a Mars felszínén. Jelenleg már több mint 5200 marsi napja végez tudományos méréseket, eközben már megtette a 45. kilométerét.
A Merkúr
Naprendszerünk legkisebb és legbelső bolygója a Merkúr. Saját holdja nincs. Mérete a Földnek 38%-a (egyenlítői átmérőiket összevetve), a Holdnak 140%-a. Tömege a Földének 5,5%-a, így a Naprendszer 2. legsűrűbb bolygója. Tengely körüli forgásideje 58,6 földi nap, Nap körüli forgásideje 87,9 földi nap. A Merkúr Föld típusú, vagyis kőzetbolygó, sok tekintetben hasonlít Holdunkhoz.
A bolygó vékony atmoszférával rendelkezik, mely főként hidrogénből, héliumból, oxigénből, nátriumból, káliumból és kalciumból áll. Keletkezésüket tekintve a származhatnak a Merkúr kérgében lévő anyagok radioaktív bomlásából, valamint napszélből.
Nap körüli orbitális pályája elliptikus, inkább egy tojásformához, mint körhöz hasonlatos (aphélium: 69 817 079 km, perihélium: 46 001 272 km), tengelyferdesége 2,11° Felszínét, a Holdhoz hasonlóan kráterek, medencék, síkságok tarkítják. A bolygó fémes magja a teljes térfogatának 42%-át teszi ki (szemben a Föld 17%-ával), amely miatt jelentős mágneses tere van.
A Merkúr kutatói
A Merkúrt már az i.e. 14. században is ismerték, első ismert feljegyzései asszír csillagászoktól maradtak ránk. A rómaiaktól maradt ránk a Merkúr elnevezés. Első távcsöves megfigyelése Galilei nevéhez fűződik.
A 20. században elindult „űrkorszak” új időszámítást jelentett a kutatásban is, mivel már nem csak távcsöveinken keresztül, hanem űrszondákkal is vizsgálhatjuk a Merkúrt. Ennek ellenére a bolygó eddig kevésbé került a kutatók célkeresztjébe, mivel szondás kutatása nehézség elé állítja a mérnök-szakembereket. A fő probléma, hogy minél közelebb keringünk a Nap körül, annál gyorsabb sebességre kell felgyorsulnunk. Míg a Föld másodpercenként max. 30,28 km-t tesz meg a Nap körül (365 nap alatt kerüli meg), ez az érték a Merkúr esetében majdnem a duplája, 58,98 km/s (88 nap alatt). A bolygót elérni kívánó szondának el kell érnie ugyanezt a sebességet, de egyúttal az orbitális pálya belépési pontjának közelében lassítania is kell annyira, hogy ténylegesen keringési pályára állhasson. Jelenleg több üzemanyag szükséges a Merkúr eléréséhez, mint a Naprendszer elhagyásához.
-
Mariner-10: Az 1973. november 3-án indított Mariner-10 űrszonda elsődleges feladata a Vénusz és a Merkúr atmoszférikus és felszíni vizsgálata volt. Műszerparkja magnetométerből, UV sugárzásmérőből, UV spektrométerből, kamerákból, töltött részecske teleszkópból, IR sugárzásmérőből és egy plazmadetektorból állt. Mivel a Merkúr megközelítése a fent tárgyalt problémába ütközik, a Mariner fejlesztőmérnökei úgy döntöttek, hogy egy, a Vénusz körül végrehajtott hintamanőverrel juttatják majd el a szondát a Merkúr közelébe, egy olyan Nap körüli pályára, mely során a szonda kis pályakorrekcióval minden egyes keringése során találkozik majd a bolygóval (a Merkúr épp két Nap körüli fordulatot tesz meg eközben). Az első elrepülésre 1974. március 29-én került sor, ez volt a történelemben az első alkalom a planéta ilyen közeli tanulmányozására. A Mariner-10 észlelte a Merkúr mágneses mezőit, valamint több mint 600 fotót készített. A következő két elrepülésre 1974. szeptember 21-én, és 1975. március 16-án került sor. Mivel mindhárom alkalommal a bolygó ugyanabban a Nap körüli helyzetben volt, a Mariner-10 csak a Merkúr 45%-át tudta feltérképezni. 8 nappal az utolsó elrepülés után a szonda manőverezésre használt nitrogén hajtóanyaga elfogyott, a mérnökök a rádióadójának lekapcsolása mellett döntöttek. A Mariner-10 valószínűleg jelenleg is Nap körüli pályán halad, bár berendezéseit a napsugárzás már jelentősen károsíthatta.
-
MESSENGER: A 2004. augusztus 3-án indított űrszonda neve (melynek jelentése: hírnök, futár – ahogy a Merkúr bolygó névadója is a római Mercurius, az istenek szárnyas csizmájú hírnöke) egy mozaikszó: MErcury: Surface, Space ENvironment, GEochemistry, and Ranging – azaz Merkúr: Felszín, Űrbeli környezet, Geokémia és Felderítés. Ezen űreszköz lett a bolygó első állandó keringő kísérője, mikor 2011. március 18-án a Merkúr körül pályára állt. Előtte olyan Nap körüli pályán mozgott, mely során kétszer elrepült a Vénusz, és háromszor a Merkúr körül, majd a negyedik közelítés során állt végleg pályára a bolygó körül. Műszerparkja képalkotó berendezésekből, gamma sugárzás és neutron spektrométerből, magnetométerből, lézeres magasságmérőből, atmoszféra és felszínösszetétel vizsgáló spektrométerből, töltött részecske és plazma spektrométerből és röntgen spektrométerből áll. Az első három elrepülés során befejezte a Mariner-10 munkáját és lefotózta a bolygó 95%-át, mérte a mágneses mezőt, bizonyítékot talált korábbi vulkanikus tevékenységre, valamint – nem várt módon – víz jelenlétét mutatta ki a Merkúr exoszférájában. Végső pályára állása után az eredetileg 2012-ig tartó küldetését egy évvel meghosszabbították. 2013-ban két, a közelben elhaladó üstökös tanulmányozásában is részt vett. 2015-re az űrszonda hajtóanyaga elfogyott, a fedélzetén megmaradt hélium felhasználásával az irányítóközpont a Merkúr felszínébe vezette. A becsapódásra 2015. április 30-án került sor a bolygó Suisei Planitia nevű medencéjében.
-
BepiColombo: A BepiColombo űrszonda (mely nevét Giuseppe „Bepi” Colombo olasz asztrofizikus után kapta, aki nevéhez fűződik többek közt a hintamanőver kidolgozása) az Európai (ESA) és a Japán Űrügynökség (JAXA) közös projektje a Merkúr tanulmányozására. A küldetés tulajdonképpen egy műholdpár együttes indítását takarja: a Mercury Planetary Orbiter (MPO, gyártja az ESA), és a Mercury Magnetospheric Orbiter (Mio/MMO, gyártja a JAXA), melyek együtt a Mercury Transfer Module egységen (MTM, gyártja az ESA) indultak el 2018. október 20-án (a hordozóeszköz egy Ariane-5 rakéta). Az ESA számára a részegységeket az Airbus gyártja.
A szondapár 7 évig fog utazni, meghajtásáról ionhajtóművek gondoskodnak. 2025 decemberében fognak a Merkúr körül orbitális pályára állni, majd szétválva kb. egy éven át tanulmányozzák a bolygót. Fő feladataik: egy csillagához közeli bolygó keletkezésének és fejlődésének tanulmányozása; a Merkúr, mint bolygó tanulmányozása (alak, belső szerkezet, összetétel, geográfia, kráterek); az exoszféra vizsgálata; a magnetoszféra és mágneses mező vizsgálata; valamint Einstein relativitáselméletének igazolásához is igyekeznek hozzájárulni (a „paraméterezett poszt-newtoni formalizmus” gamma és béta értékének nagy pontosságú megmérése).
Az MPO műszerparkja: lézeres távolságmérő; gyorsulásmérő; magnetométer; IR spektrométer; gamma és neutronspektrométer; röntgen spektrométer; UV spektrofotométer; semleges és töltött részecskeelemző; nagy felbontású és sztereokamerák; valamint napintenzitást vizsgáló röntgen és részecske spektrométer.
Az MMO műszerparkja: elektron analizátorok, ion analizátorok, tömegspektrométer, nagy energiájú részecskeelemzők elektronok és ionok részére, magnetométer, plazmahullám elemző, kén atmoszféra képalkotó; valamit kozmikus por elemző.
Szerző: Szekretár Zsolt
(folytatása következik)