A Szaturnusz holdja, az Enceladus jeges héja alatt valószínűleg ismeretlen eredetű metántermelő folyamat zajlik – állítja egy új tanulmány, amelyet az Arizonai és a Párizsi Tudományegyetem kutatói publikáltak. Az Enceladusból feltörő hatalmas vizes anyagkidobódások már régóta egyaránt elbűvölik a tudósokat és a közvéleményt. Rengeteg kutatás és elmélet született a hatalmas óceánról, amelyről úgy vélik, hogy a hold sziklás magja és jeges héja közt húzódik. A Cassini űrszonda átrepült ezeken az anyagkidobódásokon és mintát vett belőle. A vegyi összetételben viszonylag magas koncentrációt észlelt olyan molekulákból, melyek a Föld óceánjainak mélyén is megtalálhatók az úgynevezett hidrotermális kürtőkben. A mintavevő csövekben különösen szokatlan mennyiségben találtak dihidrogént, szén-dioxidot és metánt. Regis Ferrier, az Arizonai Egyetem Ökológiai és Evolúciós Biológiai Tanszékének docense és a tanulmány két vezető szerzőjének egyike a következőt mondta: „Tudni akartuk, hogy a Cassini által meglepően nagy mennyiségben talált metán megmagyarázható-e olyan, a földiekhez hasonló mikrobákkal, amelyek ’megeszik’ a dihidrogént és metánt termelnek.” Hozzátette: „Ilyen, metanogénekként ismert mikrobák keresése az Enceladus tengerfenékén rendkívül nagy kihívást jelentő mély merülési missziókat igényel, amelyek viszont még több évtizedig nem lesznek a látóhatáron sem.” Ferriere és csapata ezért más, könnyebb utat választott: matematikai modelleket készítettek annak kiszámításához, hogy a különböző folyamatok, beleértve a biológiai metanogenezist, megmagyarázhatják-e a Cassini adatait. Ezen új matematikai modellek ötvözik a geokémiát és a mikrobiológiai ökológiát, hogy elemezzék a Cassini adatait és modellezzék azon lehetséges folyamatokat, amelyek a legjobban magyarázzák a megfigyeléseket. Arra a következtetésre jutottak, hogy a Cassini adatai magyarázhatók mikrobiális hidrotermális kürtők aktivitásával, vagy olyan folyamatokkal, amelyek ugyan nem tartalmaznak életformákat, de eltérnek a Földön ismertektől. A Földön hidrotermális aktivitás akkor következik be, amikor a hideg tengervíz beszivárog az óceáni aljzatba, leggyakrabban az óceánközépi lemezhatárok közelében, elhalad egy magmakamra közelében, ami felhevíti a vizet, az pedig magas hőmérsékleten ásványi anyagokat old ki. A Földön a metán is ilyen hidrotermális aktivitással állítható elő, de kis sebességgel. A metántermelés nagy része olyan mikroorganizmusoknak köszönhető, amelyek energiaforrásként hasznosítják a hidrotermálisan előállított dihidrogént, és metanogenezisnek nevezett folyamatban szén-dioxidból metánt állítanak elő. A csapat a hold körüli kémiai és fizikai folyamatok végső eredményeként vizsgálta az Enceladus anyagkidobódásának összetételét. A kutatók először felmérték, hogy a dihidrogén hidrotermális kitermelése miként illeszkedik a legjobban a Cassini megfigyeléseihez. Illetve, hogy e kitermelés „elég” ételt tud-e biztosítani a földiekhez hasonló, hidrogénnel táplálkozó metanogének populációjának fenntartásához. Ehhez kifejlesztettek egy, a fenntartásra vonatkozó dinamikus modellt. A termikus és energetikai adatokhoz a Földön ismert adatokat vették alapul. A szerzők ezt követően lefuttatták a modellt annak megállapítására, hogy egy adott kémiai feltételrendszer, például a hidrotermális folyadék dihidrogén-koncentrációja és a hőmérséklet megfelelő környezetet biztosítanak-e ezen mikrobák növekedéséhez. Megvizsgálták azt is, hogy egy hipotetikus mikróba populáció milyen hatást gyakorol a környezetére – például a dihidrogén és a metán szökési arányára. „Összefoglalva: nem csak azt tudjuk megítélni, hogy a Cassini megfigyelései összeegyeztethetők-e az élet számára élhető környezettel, hanem a várható megfigyelésekről kvantitatív előrejelzéseket is tehetünk, amennyiben a metanogenezis valóban bekövetkezne az Enceladus tengerfenéken” – magyarázta Ferriere. A becsült legmagasabb eredményekből arra lehet következtetni, hogy – az ismert hidrotermális kémia alapján – az abiotikus (biológiai segédanyag nélküli) metántermelés korántsem ad magyarázatot az anyagkidobódásokban mért metánkoncentráció mennyiségére. Azonban biológiai metanogenezis hozzáadásával elegendő metán keletkezik, így megfelelve a Cassini megfigyeléseinek. „Ettől még nyilvánvalóan nem jutunk arra a következtetésre, létezik élet az Enceladus óceánjában” – mondta Ferriere. „Inkább azt szerettük volna megérteni, mennyire valószínű, hogy az Enceladus hidrotermális kürtői lakhatók lehetnek-e a földszerű mikroorganizmusok számára. Úgy tűnik, hogy a Cassini adatokait a modelljeink legalábbis alátámasztják.” Hozzátette: „A biológiai metanogenezis úgy látszik, kompatibilis az adatokkal. Vagyis nem vethetjük el az „élet hipotézist”, ehhez ugyanis további adatokra van szükségünk, melyeket jövőbeli küldetésekből származtathatunk.”
A szerzők remélik, hogy tanulmányuk útmutatást nyújt a Cassini által tett megfigyelések jobb megértését célzó kutatásokhoz és arra ösztönzi a tudósokat, hogy tisztázzák azokat az abiotikus folyamatokat, amelyek elegendő metánt képesek termelni a jelenlegi adatokhoz. „A metán például származhat ős-szervi anyagok kémiai lebontásából, amelyek jelen lehetnek az Enceladus magjában és a hidrotermális folyamat révén részben dihidrogénné, metánná és szén-dioxiddá alakulhatnak. Ez a hipotézis nagyon elfogadható, főként, ha az Enceladus az üstökösök által hordozott szerves összetevőkben gazdag anyagok révén jött létre” – magyarázta Ferriere. „Mindez részben azon alapul, hogy mennyire tartjuk valószínűnek egy-egy hipotézisek alapját” – mondta. – „Például, ha rendkívül alacsonynak ítéljük az élet valószínűségét Enceladuson, akkor az abiotikus mechanizmusok sokkal valószínűbbek lesznek, még ha nagyon idegenek is ahhoz képest, amit itt a Földön ismerünk.” A szerzők szerint a tanulmány nagyon ígéretes előrelépés a módszertanában, mivel nem korlátozódik olyan speciális igényekre, mint például a jeges holdak belső óceánjai, illetve előkészíti az utat a Naprendszeren kívüli bolygók kémiai adatainak kezeléséhez, melyek a következő évtizedekben elérhetővé válhatnak.