A planetológia tulajdonképpen a földtudományok és a csillagászat – melyek maguk is több tudományágból állnak – közös területe. A földtan eszközeivel kutathatjuk a Naprendszer szilárd égitesteit, azoknak kőzeteit, az égitestek bolygóalakító folyamatait. A planetológia azonban már az első égitestek kialakulása előtt színre léphet, hiszen az első szilárd részecskék, a majdani bolygók építőkövei már a Naprendszer kialakulásának kezdeteinél létrejöttek. Sokat foglalkoztatta a kutatókat Naprendszerünk néhány érdekes tulajdonsága, melyekhez hasonlót nem látunk más naprendszereknél. Napunk egyedülálló csillag, mely aránylag ritka Galaxisunkban. A legtöbb csillag kettős, hármas, vagy még több napból álló rendszerben jön létre – a mi Napunk, ez a közepes méretű csillag, pedig egyedül van. Lehetséges lehetett vajon a Naprendszerünket kialakító kisméretű ősköd magától történő összeomlása, mely elvezetett Napunk és bolygórendszere létrejöttéhez?
Az ősi, kondritos meteoritokban található ősi részecskék adják meg a magyarázatot, hogy más folyamatoknak is be kellett következniük ahhoz, hogy ez az ősköd összeomolhasson. Ezek a részecskék a kondritos meteoritok anyagának csak 0,1%-át teszik ki, méretüket tekintve a mikrométer méretű szilícium-karbidtól a nanométer méretű gyémánt-szemcsékig terjednek. Ami érdekes bennük, az, hogy a Naprendszer létrejötte előtti időből származnak.
Naprendszer létrejötte előtti részecskék. (1)
A történet pedig, amire ezek a különleges részecskék tanítanak minket, az egyenesen lenyűgöző. Annak az inaktív, kisméretű csillagközi felhőnek, melyből később kialakult Naprendszerünk, közvetlen közelében két olyan esemény is lezajlott, mely nélkül nem alakult volna ki Napunk bolygórendszere. Az első eseményt egy úgynevezett AGB vörös óriás csillag közelsége tette lehetővé. Ezek a vörös óriások már oxigént és szenet is előállítanak, majd pulzálva kilövellik ezeket, és rengeteg olyan anyaggal gazdagítják környezetüket, mely anyagok fontos szerepet játszanak majd Naprendszerünkben.
Szupernóva születése egy csillagközi köd közelében (2)
A második esemény egy jóval drámaibb szupernóva volt. E hatalmas tömegű csillag robbanása során hatalmas anyagmennyiségeket lök ki, mely anyag nehéz elemekben, fémekben volt gazdag. A kidobott anyag egyre távolodik, miközben egyre ritkább lesz. A robbanás lökéshulláma azonban közeli ködöket préselhet össze – és pontosan ez történt Naprendszerünket majdan alkotó csillagközi köddel is.
A csillagközi köd protoplanetáris koronggá omlik össze (3)
A szilárd anyag első részecskéi lassan egyre nagyobb és nagyobb részecskékké, porszerű anyaggá álltak össze. A fiatal, kialakuló Nap kitörései gyakran forró gázt lövelltek ki, melyek felolvasztották ezeket a részecskéket, melyek a súlytalanságban természetesen gömb alakúvá olvadtak, a kihűlés után is megtartva ezt az alakot. Ezekből a gömböcskékből, a kondrumokból alakultak ki később a bolygóalkotó planetezimálok, a „kisbolygók” és „üstökösök”.
Meteoritból kipreparált kondrumok (4)
A kondrumok később kövekké, sziklákká álltak össze. Egy meteorit szelete (5)
A jelenlevő gáz nagy részéből kialakult központi csillagunk, Nap, a korongban lévő gáz, fémek és jegek fennmaradó anyagából (naprendszerünk hozzávetőleges összetétele 98% gáz, 1,5% jegek, 0,5% fémek) pedig a bolygók. Természetesen, a különféle anyagok máshogy viselkednek. A Nap közelében a jegek (vízjég, ammónia és metánjég) természetesen nem stabilok, ezek csak a Naptól messze létezhettek, a kőbolygókat alkotó fémek és szilikátok viszont eltűrték a Nap közelségét.
Ezért is létezik Naprendszerünkben egy láthatatlan, mégis fontos határvonal, az úgynevezett jéghatár. E vonalon belül az űrben a jég elpárolog, nem stabil, tehát itt főleg fémek és szilikátok (valamint az ezekből létrejövő bolygók) léteznek, a határon kívül pedig a jég stabil lehet.
Jéghatár a Jupiter közelében húzódik (NASA felvételei alapján, a szerző által készített montázs)
A bolygóképződés során sok „nyersanyag” maradt, melyek különféle okok miatt nem álltak össze bolygókká. Ezek a planetezimálok – a jéghatár miatt – nagyjából két típusra oszthatók: „kisbolygókra”, melyek fémekből és szilikátokból állnak, és „üstökösökre”, melyek főleg jegekből és szénben gazdag porból állnak. A kisbolygók a Naphoz közelebb, az üstökösök a Naptól távolabb helyezkednek el. Természetesen, nincsen éles vonal a kétféle planetezimál között: vannak jeges kisbolygók és nagyon poros, köves üstökösök.
A fémekben és szilikátokban az impakt kinetikus energia, a szilikát-víz reakciók exoterm energiája, valamint a kisebb mértékben természetesen létező radioaktív bomlás hőt szabadít fel. A kisebb planetezimálokban kevesebbet, a nagyobb bolygókban többet. A kisbolygókban fejlődő hő nem tudja azokat felolvasztani, anyaguk a mélyben csak átforrósodik, de nem olvad meg. Az üstökösökben fejlődő hő még ennél is kisebb, hiszen anyaguk nagy része jég. Ez a hő csak arra elég, hogy a jeget felolvassza, bár ez is elég izgalmas gondolatokat szül: gondoljunk csak bele, hogy a szénben és szerves anyagokban gazdag langyos „sár” milyen izgalmas kémiai reakciókat szülhet.
Regionális metamorfózis a kisbolygókban, vizes átalakulás az üstökösökben (Ida aszteroida, NASA / JPL / USGS, 9P/Tempel üstökös, NASA képei alapján a szerző által készített montázs)
Nagyságrendileg, ha egy (kisbolygónál nagyobb) törpebolygó elég nagy (mintegy 500 km), akkor ez a belsejében fejlődő hő már megolvaszthatja annak anyagát, és a különféle anyagok már súly szerint el tudnak különülni.
A törpebolygók kialakulásuk után már átolvadtak (8)
A Föld (és más törpebolygók, bolygók) esetében felépítésük már szferikus lesz, tehát a nehezebb fémek (vas, nikkel) a magba süllyednek, a köpeny tartalmazza a peridotit-szerű nehezebb szilikátokat, és a kéreg pedig a legkönnyebb szilikátokat.
A Föld felépítése (9)
Naprendszerünk bolygóinak fejlődése természetesen kissé különbözött, de alapvetően mindegyik hasonló felépítéssel rendelkezik.
Források:
Presolar grains from meteorites: Remnants from the early times of the solar system
https://www.sciencedirect.com/science/article/pii/S0009281905000115
Potassium heated Earth’s core
https://www.nature.com/news/2003/030508/full/news030505-5.html
Chondrules and the origin of meteorites
https://nau.edu/cefns/labs/meteorite/about/chondrules-and-the-origin-of-meteorites/
Chondrules – Annual Review of Earth and Planetary Sciences
https://www.annualreviews.org/doi/pdf/10.1146/annurev.earth.25.1.61
The Supernova Triggered Formation and Enrichment of Our Solar System
https://arxiv.org/pdf/1111.0012.pdf
Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova
https://www.nature.com/articles/ncomms13639
Planetesimal formation starts at the snow line
https://arxiv.org/abs/1710.00009