Lyα, Hédervári és a JWST

Szerző: Kocsis ERzsó

Még az első pandémiás hullám sodorta íróasztalomra Hédervári Péter – „Üstököskutatás az űrkorszakban” (1983) című művét. Ma is úgy vélem, hogy az akkori kométaváró (emlékszünk a C/2020 F3 (NEOWISE) meseszép látványára?) hangulat repítette pont ezt az írást az utamba, nem pedig az “Amiről a Föld mesél” (1967), vagy éppen az “Amiről a Hold mesél” (1969) köteteit. A Magvető Kiadó által megjelentetett mű három évvel a Halley-üstökös visszatérése előtt, 1983-ban látott napvilágot. A könyv bemutatásakor csak válogattam az egyes témákban, ami egy kisebb szakmai útmutatás volt az üstökösészlelés mikéntjéhez, valamint az üstököskutatás értelmezéséhez. A könyvben alaposan feltárt „látható semmi” nem más tehát, mint egy valódi égitest, nem pedig a puszta káprázat szülötte. Bőséges bizonyítékok tárulnak fel, adatok sora mesél róluk és bolygórendszerünk törvényeiről.

Semleges hidrogén oszlopsűrűség térképek a fentebb szereplő LAE-k modellezéséhez. Az ezekből álló kiterjedt fonalas struktúrák itt láthatóak. Ezek kapcsolatban állnak a vizsgált Lyα emisszióval (1502.01349.pdf (arxiv.org) (2.oldal))

Az akkoriban elfogadott modell a szovjet-orosz űrkutatás hőskorszakának egyik „terméke”. Az 1959-ben induló Luna-2 űrszonda 35 órán át mérte a napszelet. Ezeket az eredményeket megerősítette az ugyanabban az évben felbocsátott Luna-3 is. Ezen űreszközök világító ionizált nátriumfelhőket bocsátottak ki magukból. A kísérletek során azt lehetett távcsövekkel a Földről észlelni, hogy merre “fújja” azokat a napszél. Az ionszférában lejátszódó események alapján a kutatók feltételezték a napszél létezését. Biermann német csillagász már korábban az ötvenes évek elején utalt erre. Hazánkban Detre László pedig 1952-ben az üstököscsóvákra gyakorolt hatását is vizsgálta. Ám ekkoriban a kérdés kapcsán még nagy volt a bizonytalanság a tudományos körökben is.

MUSE adatok a Lyα fényességi funkcióiról és annak teljességi görbéjét mutatja be. A kék és piros LF-ek rövid/hosszú hullámú felmérésekből (Matthee 2015; Konno 2018), és a zöld a MUSE IFU felmérésből származnak (Drake 2017; semanticscholar.org).

A szovjet űrszondákkal indulhatott el a tényleges kutatások sora. Így ma már tudjuk, hogy a napszélben elsősorban elektronok, protonok és alfa részecskék érkeznek. Hatásukra aszimmetrikussá válik a Föld mágneses tere. Ennek következtében még a Van Allen-féle sugárzási öv (melyet a magnetoszféra foglal magába) alakja is módosul. A Földnek a Nappal átellenes félgömbje felett egy ún. mágneses csóva is kialakul. Ez fokozatosan beleolvad a bolygóközi mágneses térbe. Bolygónknak globális mágneses tere van, míg az üstökösöknél ez nem figyelhető meg. Mindez későbbi vizsgálódásom szempontjából fontos elem lesz.

A porgömbmodell szerint az üstökös kómája nem más, mint „gömbszerű atmoszféra”. Ez veszi körül a magot. Anyaga gázkeverék: elektronokból és pozitív ionokból álló plazma, valamint semleges részecskék alkotják. A hidrogénkorona az üstökös magjától nagyjából egymillió kilométerre kezdődik, és akár tízmillió kilométerre végződhet.

Az óriási Lyman-alfa-blob (balra) és egy művészi ábrázolás, hogyan nézne ki közelről (Wikipedia)

Ezt a modellt vetette el 1972-ben aztán Delsalfa. Legfőbb érve a Lyman-alfa haló felfedezése volt, mivel ezt a képződményt tartja a jégmag legfontosabb bizonyítékának. A Lyman-alfa haló az üstökös magjától körülbelül egymillió kilométerre kezdődik. A hidrogénkorona körülveszi az egész kómát, majd nagyságrendileg tízmillió kilóméterre terjed ki. Biermann feltételezte, hogy ha az üstökösmagban a jég a főszereplő, akkor a fényesebb kométákat öveznie kellene egy felhőnek is. Ezt hidrogén és hidroxilgyökök alkotják, amelyekben disszociáció révén megtörténik a vízmolekulák bomlási folyamata. A térben a társaitól izolálódó hidrogénatom sugárzásának szinte teljes egészét nem a látható fényhullámok tartományában bocsátja ki, hanem az igen távoli ibolyántúliban. Pontosan abban a vonalban, amelyben a Lyman-féle sorozatban az alfa jelzést kapta. Ez 121,6 nanométeres hullámhosszon mérhető.  Ezen feltevés 1970-ben igazolódott be az Orbiting Astronomical Observatory (OAO) mesterséges holdnak a Benett-üstökös esetében végzett vizsgálataival. A kométa körül elhelyezkedő nagy kiterjedésű felhőt Code és Lillie fedezték fel. Ennek legerősebb sugárzása a Lyman-alfa vonalban érkezik.

Ha az üstökösmagot jég alkotja, akkor a hidrogéngyökökben szereplő atomok száma hozzávetőlegesen a hidrogénatomok számával lesz azonos. A Tago-Sato-Kosaka, a Kohoutek és az Encke égi vándorok vizsgálata is hasonló eredményeket hozott. Másodpercenként 1030 atom szabadul ki ezek jégmagjából, ezáltal óriási mennyiségű gáz képződik. Whipple modellje is újabb megerősítést nyert ezáltal. Delsemme 1965-től végzett kutatásait többek között megállapították, hogy a magban a közönséges jég szublimál, amikor a Naptól 450 millió kilométernél közelebb halad el. A kómán belül erős kifényesedést kell észlelnünk, amikor a Lyman-féle vonalban vizsgálódunk vízből képződött jég esetében. Egy 40000 km átmérőjű fényességmaximum észlelhető volt a Tago-Sato-Kosaka üstökös belsejében is. Ez a megfigyelés egy speciális szűrővel készült, ami a színképnek minden egyéb tartományát kizárja. Csak a rövid hullámhosszú sugárzás detektálhatja az észlelő eszköz, az, ami a Lyman-alfa vonalak mentén keletkezik a megfelelő sávban.

A világegyetem egyik legnagyobb különálló objektuma, a LAB-1 nevű Lyman-alfa-blob (Wikipedia)

Lyman-alfa emissziós vonalat kibocsátó gáz hatalmas koncentrációja detektálható a távoli világűrben, az ún. Lyman-alfa foltokban (Lyman alpha blob, LAB), messze túl galaxisunk határain. Ezek a gáz-struktúrák a világegyetem legnagyobb ismert objektumai közé tartoznak, átmérőjük meghaladhatja a 400 000 fényévet is. Mivel a Lyman-alfa emissziós vonal az ultraibolya (UV) tartományban található, bolygónk légköre pedig hatékonyan szűri ki az UV-fotonokat, ezért ezek a képződmények csak annak köszönhetően válhattak a Föld felszínéről is észlelhetővé, hogy fényük a világegyetem tágulása miatt jelentős vöröseltolódást szenved. Földünk légköre hatékonyan szűri ki az UV-fotonokat, így azon a Lyman-alfa fotonok csakis vöröseltolódással tudnak átjutni. 2000-ben Steidel és társai, majd Matsuda és kollegái keresték a LAB-okat. Mai tudásunk szerint még nem ismert, hogy ezek galaxisok sűrű halmazát jelzik-e, illetve hogyan kapcsolódnak a környező csillagvárosokhoz. Azt sem tudjuk még, hogy milyen mechanizmus hozza létre a Lyman-alfa emissziós vonalat. Ám ezen halmazok értékes nyomokat rejthetnek a galaxisok kialakulásának magyarázatához.

A Lyα fotonok valószínűleg kiterjedt Lyα emissziót eredményeznek egyes galaxisok körül. Ilyen alacsony felületi fényességű Lyα halókat (LAH) észleltek ezen képződmények Lyα képeinek egymásra vetítésével. Eredetük vizsgálatához a kutatók nagy felbontású hidrodinamikus kozmológiai galaxisképződési szimulációt készítettek. Módszerükkel különböző megfigyelési szempont alapján az egyes halok átlagos Lyα felszíni fényességprofilját is kiszámították. Megállapították, hogy a megfigyelt LAH-ok léte nem magyarázhatók kizárólag a központi emittáló galaxisból (LAE) származó és a galaxis körüli gázban lévő hidrogénatomok által nagy távolságra eljutó fotonokkal. Ehelyett inkább a külső haló régióiból származó Lyα emisszió a felelős keletkezésükért. Világegyetemünk korai szakaszának megértésében a Lyα emittáló galaxisok megértése kulcsfontosságú lehet. A kozmikus reionizáció és a galaxisképződés feltárása ezen sugárzásátviteli számítások alapján lett modellezve. Így a következő generációs teleszkópokkal, mint például a JWST (James Webb Space Telescope), az E-ELT (European Extremely Large Telescope) és a TMT(Thirty Meter Telescope), ilyen LAE-ket is észlelhetnek majd.

Karantén utáni olvasmányélmények egyike volt Hédervári Péter „Üstököskutatás az űrkorszakban” (1983) című műve.. A korabeli tanulmányokat egészítettem ki a 21. századi felfedezésekkel. A modernkori üstököskutatás vizsgálata átívelt a Lyman-féle haló tanulmányozásáig. A II. kerület újlaki városrészében élő magányos ismeretterjesztő elmélkedéseinek idején még nem tudhatta, milyen messzire juthatott ezekkel az információkkal a hálás utókor! A LAE-k észlelésével jobban megérthetjük Világegyetemünk korai szakaszát. Az észlelés pedig többek között a nemrég felbocsátott James Webb űrteleszkóp segítségével is megtörténhet. Így jutottunk el a napszél, a hidrogénkorona, és Lyα segítségével Héderváritól a JWST-ig.

Forrás:
Hédervári Péter: Üstököskutatás az űrkorszakban
https://www.britannica.com/science/comet-astronomy/The-modern-era#ref1223651
https://www.semanticscholar.org/paper/On-the-Diffuse-Lyman-alpha-Halo-Around-Lyman-alpha-Lake-Zheng/71e36abe2156200c74716887f5f926c7ec5b368c
https://www.semanticscholar.org/paper/Small-scale-Intensity-Mapping%3A-Extended-Halos-as-a-Mas-Ribas-Hennawi/a1d3e01aad794118e28ae6bcde8ad5cc10b78f3f
https://www.semanticscholar.org/paper/Resolved-Lyman-%CE%B1-properties-of-a-luminous-galaxy-in-Matthee-Sobral/f1d2077d6bf0e614251c64056929b2bf61d9bdfb
https://en.wikipedia.org/wiki/Lyman-alpha_blob
Vincze Miklós, 2022: Szóbeli közlés