A 66 millió éve történt becsapódásnak köszönhetjük az amazóniai esőerdőt

Szerző: Ivanics-Rieger Klaudia

Egy nemrég megjelent tanulmány szerint a fosszilizálódott pollenek és levelek kimutatták, hogy az aszteroida, mely a dinoszauruszok kipusztulását okozta, egyúttal át is formálta Dél-Amerika növénytársulását, hogy így létrejöjjön a bolygó legnagyobb esőerdője. A tanulmányt Carlos Jaramillo, a panamai Smithsonian Trópusi Kutatóintézet paleobiológusa és Bonnie Jacobs, a Déli Metodista Egyetem paleobiológusa írta. Jarmillo kolumbiai származású és kifejezetten hazája trópusi erdőinek eredetét akarta megvizsgálni. A dinoszauruszok és fosszíliák rajongóinak körében igen jól ismert az aszteroida-becsapódás, mely 66 millió évvel ezelőtt kipusztította a dinoszauruszokat, mint amilyen a Tyrannosaurus rex. De azt gyakran figyelmen kívül hagyják, hogy a becsapódás más ökoszisztémákat is eltörölt. Egy új tanulmány kimutatta azonban, hogy ezen események egy másik, különösen fontos eredményhez vezettek, méghozzá az amazóniai esőerdő kialakulása, ami a bolygó leglátványosabb és legváltozatosabb környezete. A tanulmányhoz több tízezernyi növényfosszíliát elemeztek. Kimutatták, hogy a kihalás egyben egy hatalmas újraindító esemény is volt a neotropikus ökoszisztémák számára: teljesen új ösvényre terelte az evolúciójukat, ami a mai változatos és látványos ökoszisztémájához vezetett. Ezen felismerés alapvető előrelépést jelent a tudásban és új lendületet ad a trópusokon élő evolúciós örökség megőrzésének. Ez nagyon fontos, hiszen a terület olyan, ember által okozott fenyegetéssel áll szemben, amely hatalmas pusztításokat okoz Amazóniában. Pedig az esőerdő fajok millióinak létét alapozza meg, beleértve az emberét is. A szerzők szerint a becsapódott aszteroida evolúciós és ökológiai kihatással volt az amazóniai esőerdő kialakulására és más, kulcsfontosságú élőhelyekre az egész bolygón. A mai esőerdők tehát szerves részét képezik a földi életnek. Különösen az amazóniai játszik döntő szerepet a bolygó édesvízi körforgásának és éghajlatának szabályozásában. Sok akadémikus és amatőr kövületvadász eddig nem sok figyelmet fordított a trópusi területekre, mivel feltételezték, hogy a meleg, nedves helyek körülményei megakadályozzák a szerves anyagok megkövülését.

Késő-karbon kori megkövült páfránylevél Ohioból. Forrás: Wikipedia

Ám körülbelül 50 000 pollenszemet és 6000 fosszilizálódott levelet elemeztek 12 év alatt úgy, hogy a nulláról kellett elindulni. A vizsgálatokból kiderült, hogy az aszteroida – mely feltételezhetően az úgynevezett Baptistina-család tagja volt és már 160 millió évvel ezelőtt leszakadt a csoportjától, elszabadulva a Mars és Jupiter közti aszteroida-övezetből – bár kipusztította a dinoszauruszokat, ugyanúgy az amazóniai esőerdőt is kialakította. Ismert tény az is, hogy a becsapódás okozta hatások és annak közvetlen illetve közvetett következményei függenek a helyi viszonyoktól és a krátertől való távolságtól, amely a Yucatán félszigeten található és a Chicxulub nevet viseli.

A 66 millió évvel ezelőtt történt kihalást okozó Chixculub-kráter feltételezett becsapódási helye, a mexikói Yucatán-félsziget.
Forrás: NASA/JPL-Caltech

Az új-zélandi erdők például viszonylag sértetlenül megúszták, de a kutatóknak fogalmuk sem volt, hogy az esemény miként változtatta meg Afrika vagy Dél-Amerika trópusi esőerdőit. Ahogy ritkák a komplett csontváz kövületek, úgy egész fák sem őrződnek így meg. Jaramillo és kollégái ezért vizsgálták a levélmaradványokat, sőt, a mikrofosszíliának számító polleneket, a virágport. Ezek sajnos eléggé alulértékeltek, hisz nem olyan látványosak, mint egy dinoszaurusz. Pedig ugyanúgy rengeteg fontos információt hordoznak, mint a csontok. Például szépen fel lehet mérni belőle, hogy milyenek volt az adott kor növénytársulásai. Jaramillo és munkatársai egész Kolumbiában mintegy 53 helyszínt tanulmányoztak. Olyan helyeket kerestek, melyek egyrészt közvetlenül a becsapódás előtt illetve a következő tízmillió évben, a paleogén időszakban keletkeztek. Itt találták a rengeteg fosszilis levelet és pollent, melyek alapján már le tudták írni azokat a növényeket, melyektől származtak. Friss, ettől különálló tanulmányok már kimutatták, hogy a több fényt kapó leveleknek nagyobb a vénasűrűsége valamint a 13-as izotóp aránya. A falevelek formája az éghajlatra vagy annak változására is utal: a lekerekített szélűek a meleg, a fogas szélűek illetve az osztott levelek a hidegebb éghajlatokra jellemzők inkább. A csapadékot pedig a levelek mérete jelzi: a nagyméretű levelek több csapadékra utalhatnak. A kutatók a kövületek ezeket a jellemzőket tanulmányozták, hogy bemutassák a becsapódás utáni állapotokat. Más tanulmányokból szintén ismertek a következő tények: a becsapódás után a környezeti hatások miatt elindult nagytömegű fajkipusztulás először a gombák elszaporodását okozta, majd az olyan páfrányok vették át az uralmat, mint amilyenek a pajzsikafélék. Nagyobb erdők csak ezután jelentek meg. Ezen fák nagyrészét hüvelyesek alkották, melyek termése rengeteg tápanyagot tartalmazott. Ez az addig inkább mindenevő emlősök (jórészt rágcsálófélék) táplálkozását is átalakította, illetve segített az emlősök gyors elterjedésében és a különböző fajok kialakulásában. Tehát a becsapódás utáni új növénytársulások létrejötte elősegítette azt a fejlődési utat, mely végül az ember kialakulásához vezetett. A kataklizmikus megsemmisülésből főnixmadár-szerűen új élet sarjadt. A jelen kutatásból a tudósok ezt Dél-Amerikára is le tudták vetíteni. A becsapódás előtt ezt a régiót főként tűlevelű növények jellemezték, a nyitott lombkorona alatt a páfrányoknak is lehetőségük volt a burjánzásra. A dinoszauruszok valószínűleg kulcsfontosságú szerepet játszottak ezen erdők fenntartásában, például a növényzet kitisztításával, a fák ledöntésével. Az aszteroida becsapódásával azonban ez az ökoszisztéma egy pillanat alatt és visszavonhatatlanul megváltozott. A kataklizma után a valószínűleg több évig tartó tüzek elnyelték Dél-Amerika déli erdőit. A szerzők számításai szerint számos állat mellett a trópusi növényfajok mintegy negyvenöt százaléka is eltűnt a területről. Hatmillió évbe telt, mire az erdők egyáltalán visszanyerték a biodiverzitás azon szintjét, amely a becsapódás előtt volt. Ám a lassan visszanövő fajok teljesen mások voltak, mint korábban. A megjelenő hüvelyesek olyan növények, melyek szimbiotikus kapcsolatot alakítanak ki azon baktériumokkal, melyek lehetővé teszik számukra a nitrogén megkötését, ezáltal gazdagították a korábban tápanyagokban szegény talajt. Ez és a kataklizma után keletkező hamu foszforja lehetővé tette, hogy a hüvelyesek mellett más virágos növények is kifejlődjenek, így kiszorítva a tűlevelűeket. Ezen fajok már sűrű lombkoronát alakítottak ki, így versenyezniük kellett a fényért. Ezáltal alakult ki a ma ismert, több szintből álló amazóniai esőerdő.


Forrás:
Rachel Nuwel – The asteroid that killed the dinosaurs created the Amazon rain forest (Scientific American 2021. ápr.1.)
A cikk az eredeti, angol nyelvű cikk felhasználásával készült.

Bolygós rövidhírek: megérkeztek az első friss képek a Ganymedesről

Ahogy korábbi hírünkben beszámoltunk róla, június 7-én a Juno űrszonda eddig páratlanul közel, 1038 kilométerre repült el a Jupiter legnagyobb holdja, az 5262 kilométeres Ganymedes mellett. Egy nappal a Ganymedes-közelítés után már meg is érkeztek az első képek a Naprendszer legnagyobb holdjáról – olvasható a NASA oldalán.

A Juno űrszonda közelebb repült a Jupiter legnagyobb holdjához, mint eddig bármelyik űrszonda az elmúlt több, mint két évtizedben.

Az első két felvételt a JunoCam, valamint a Stellar Reference Unit – Csillagászati Referenciaegység nevű kamerák készítették a Ganymedesről, olyan figyelemre méltó részleteket mutatva, mint meteoritkráterek, egymástól elkülönülő sötét és világos foltok, valamint olyan felszínformák, melyek tektonikus törésekhez köthetőek.

“Ez volt az az űrszonda, mely legközelebb repült ehhez az óriási holdhoz, egy nemzedék alatt.” – fogalmazott Scott Bolton, a Southwest Research Institute munkatársa, a Juno fő kutatásvezetője. “Időbe fog telni, mire bármilyen tudományos következtetést levonunk, de addig is egyszerűen csak csodálhatjuk ezt az égi csodát.”

A Ganymedes a Juno jún 7-ei felvételén. Kép forrása: NASA/JPL-Caltech/SwRI/MSSS

Az űrszonda, JunoCam nevű, látható fényben operáló kamerájának zöld csatornájában, a hold csaknem egy teljes oldalát megörökítette. Később, ha a kamera vörös és zöld csatornáinak képei is megérkeznek, a felvételekből képesek lesznek egy valódi színes kompotizot is készíteni, melyen a képfelbontás pixelenként 1 kilométer lesz. Az űrszonda továbbá a Stellar Reference Unit nevű, a Juno-t a pályán tartó navigációs kamerával is készített egy felvételt a hold árnyékos, pusztán a Jupiter fényében derengő feléről.

Ez a felvétel a Ganymedes árnyékos oldaláról készült a Stellar Reference Unit nevű kamerával. A kép felbontása 600 és 900 méter/pixel közé esik. Kép forrása: NASA/JPL-Caltech/SwRI

Az űrszonda a közeli jövőben további felvételeket fog küldeni a Ganymedesről. Emellett a Juno mélyebb betekintést fog nyújtani a hold összetételébe, mágneses terébe, ionoszférájába és jégburkába. A ’70-es évek óta feltételezzük, hogy a Ganymedes felszíne alatt a Naprendszer egyik (ha nem “a”) legnagyobb óceánja rejtőzhet két jégréteg közé szorulva. Itt feltétlen meg kell említeni, hogy az óceán alatti jégrétegre már más nyomás hat, így a jég a Földön is ismert I-es (hexagonális) fázis helyett VI-os (tetragonális) fázisban van, mely jégréteg alatt egy sziklás köpeny, illetve egy részben olvadt fémes mag található.

A Ganymedes felépítése. A két, eltérő sűrűségű jégréteg között a Naprendszer egyik legnagyobb óceánja lehet.
Forrás: Kelvinsong – Wikipedia; CC BY-SA 3.0

Akárcsak az Europa, úgy a Ganymedes hold is ideális feltételeket biztosít az élet kialakulása számára. Későbbi kutatások felfedték, hogy a hold mágneses terére, és így a sarki fényére is hatással vannak a felszín alatti tengeráramlatok, bizonyítva a nagy mennyiségű folyékony víz jelenlétét.

A Juno a későbbiekben a Jupiter két másik holdja, az Europa és az Io mellett is elrepül, mielőtt küldetése végéhez érne.

Bolygós rövidhírek: vulkánok lehetnek az Europa óceánja alatt

Szerző: Kovács Gergő

A Geophysical Research Letters-ben megjelent friss tanulmány szerint a Jupiter Europa holdja belsejében elégséges a hő tenger alatti vulkánok működtetéséhez, számol be a Phys.org. Egy új kutatás és számítógépes szimulációk szerint a hold jeges felszíne tekintélyes méretű óceánt rejteget, mely alatt a sziklás köpeny elég forró lehet ahhoz, hogy olvadt állapotban legyen. A modell szerint a legtöbb hő és így a legaktívabb vulkanizmus a hold pólusai közelében lehet.

A 2024-ben induló, az Europahoz 2030-ban megérkező Clipper. Forrás: NASA/JPL-Caltech

A NASA 2024-ben induló, és a holdat 2030-ban elérő Clipper űrszondája több alkalommal is igen közel fog elszáguldani az Europa mellett, hogy részletesen feltérképezze annak felszínét és megvizsgálja a hold ritka légkörét is. Ahogy az űrszonda feltérképezi a holdat, annak felszínét, gravitációs és mágneses mezejét, illetve az ezekben jelentkező anomáliákat, megerősítést kaphatunk a vízalatti vulkanizmus létéről.

Az Europa jégpáncélja alatt folyékony vízréteg, egy olvadt szilikátköpeny és egy vasmag található; az új kutatás segít megérteni, hogyan képes a belső hőtermelés működésben tartani a tenger alatti vulkánokat. Forrás: NASA/JPL-Caltech/Michael Carroll

Bár a Clipper nem egy életnyomok után kutató misszió, segít jobban megismerni az Europa fizikai felépítését, így képes alátámasztani azt a feltevést, hogy az égitest képes lehet-e az élet kialakulásához szükséges feltételeket biztosítani. Továbbá segít jobban megértetni az élet kialakulását saját bolygónkon, valamint útmutatást adni az életnyomok más égitesteken történő kereséséhez.

Bolygós rövidhírek: folyékony vizet találtak egy meteoritban

Szerző: Rezes Dániel

Japán, kínai és amerikai kutatók folyékony vizet azonosítottak egy primitív szenes kondrit meteoritban. A felfedezés nagyban hozzájárulhat a Naprendszer korai folyamatainak megértéséhez.

A víz gyakori összetevője a Naprendszernek, megjelenik többek között bolygónk felszínén, jégként a Holdon, valamint a Szaturnusz gyűrűiben és Enceladus nevű holdjának felszíne alatt is. Már korábbi tanulmányok is megmutatták, hogy a víz fontos szerepet játszott a Naprendszer kialakulásában és korai fejlődésében. Ennek a szerepnek a szélesebb körű vizsgálatára a kutatók megkíséreltek folyékony vizet találni extraterresztrikus anyagokban – így például meteoritokban – melyek legnagyobb része olyan kisbolygókból származik, melyek ebben a korai időszakban jöttek létre.

A fluidzárványokat tartalmazó Sutter’s Mill meteorit néhány darabja. Forrás: Wikipedia

A szakemberek már korábban is találtak szerkezetileg kötött hidroxilt és/vagy H2O molekulákat tartalmazó ásványokat meteoritokban, de folyékony vizet ezidáig nem. A víz ilyen formája csak bizonyos ásványokban jelen levő ún. fluidzárványok formájában maradhatott fenn. Ezekben a zárványokban jelen levő folyadék számos egyéb alkotót is tartalmazhat oldott formában, mely az egykori környezeti paramétereket jelzi.

A fluidzárványokat a kutatók a 2012-ben hullott Sutter’s Mill nevű, Mighei-típusú (CM) szenes kondritban található kalcit (trigonális kristályrendszerű kalcium-karbonát) kristályokban azonosították. A meteoritcsoport azért különleges, mivel anyaga igen primitív, forráségitestjük 4,6 milliárd éves, emellett vizes átalakuláson estek át a kisbolygón. A kutatók a vizsgálatokhoz olyan precíz vizsgálati módszereket alkalmaztak, mint a szinkrotron alapú röntgen nanotomográfia és a hűthető tárgyasztallal kiegészített transzmissziós elektronmikroszkópia.

A Sutter’s Mill SM33 nevű darabja. Forrás: GeoJack – Wikipedia; CC BY-SA 3.0

A vizsgálatok eredményeként egy olyan nanométeres (milliméter milliomodrésze) mérettartományba eső fluidzárványt azonosítottak kalcitkristályban, mely legalább 15% szén-dioxidot tartalmaz. A felfedezés megerősítette azt a feltételezést, miszerint a szenes kondritokban jelen levő kalcitkristályok nem csak folyékony vizet, de szén-dioxidot is megőrízhettek. A tanulmány publikálása előtt fluidzárványokat csak kevésbé primitív közönséges kondritokban található szenes kondrit anyagú törmelékekben található halit (kősó; köbös kristályrendszerű nátrium-klorid) kristályokban sikerült kimutatni.

A Sutter’s Mill meteoritban felfedezett, folyékony vizet tartalmazó fluidzárvány jelenlétéből érdekes következtetések vonhatóak le a szenes kondritos kisbolygó eredetére és a Naprendszer korai történetére vonatkozóan. Eszerint a meteorit szülőégitestjében a kőzetanyag fagyott víz és szén-dioxid jelenlétében állt össze. Ez a Naprendszernek csak azon részén következhetett be, mely kellően hideg volt a víz és a szén-dioxid szilárd halmazállapotban tartásához. Ilyen környezet valószínűleg a Jupiter pályáján túl létezhetett. Később a Jupiter instabilitása miatt a kisbolygó elindult a Naprendszer belső régiói felé, ahol darabjai beléptek a Föld légkörébe. Ez a feltételezés egybevág a napjainkban is elfogadott modellekkel. A felfedezés fontos mérföldköve a tudománynak. Az apró fluidzárvány vizsgálatával közelebb kerülhetünk tágabb környezetünk – a Naprendszer – kezdeti folyamatainak pontosabb megértéséhez.

Források:

[1] https://www.eurekalert.org/pub_releases/2021-04/ru-sfc042021.php

[2] Tsuchiyama, A., Miyake, A., Okuzumi, S., Kitayama, A., Kawano, J., Uesugi, K., Takeuchi, A., Nakano, T., & Zolensky, M. (2021). Discovery of primitive CO2-bearing fluid in an aqueously altered carbonaceous chondrite. Science Advances, 7(17), eabg9707.

Hírek: Arecibo – egy korszak vége

Kereshetjük a szavakat, de talán nem lehet jobban kifejezni, mit is jelent az ikonikus Arecibo-i rádióteleszkóp pusztulása. Egy korszak vége.

2020. december 1-jén elpusztult a már régóta nagyon rossz állapotban lévő Arecibo-i Rádióteleszkóp, a 900 tonnás, kábeleken lógó platform belezuhant az obszervatórium tényérjába. A komplexum már így is bontásra lett ítélve: az elhanyagolt műszer két rögzítőkábele már korábban elszakadt, lyukakat ütve az antennatányérba. Az amerikai National Sciences Foundation (NSF) ekkor döntött a viharok, hurrikánok amortizálta komplexum lebontásáról.



Ilyen volt fénykorában, illetve ez maradt a híres rádiótávcsőből:


Az Arecibo-i rádióteleszkóp nemcsak csillagászati, de planetológiai szempontból is egy fontos eszköz volt: segítségével készült az első radartérkép a Vénuszról, sikerült jeget kimutatnia a Merkúr északi és déli sarkvidékein, alapvető szerepe volt földközeli kisbolygók kutatásában, felfedezte az első exobolygókat a PSR 1257+12 pulzár körül, mégis talán leginkább az Arecibói üzenet néven elhíresült rádióadás által lett ismert, melyet technológia-demonstráció céljából sugároztak 1974. november 16-án a tőlünk 25000 fényévre lévő Messier 13 nevű gömbhalmaz irányába.

Bolygós rövidhírek: szerves anyagot találtak egy meteoritban

Szerző: Marcu András

A NASA Goddard Űrközpont és a Carnegie Tudományos Intézet asztrobiológusai többféle aminosavat találtak az Asuka 12236 nevű, szenes kondritból álló meteoritban, amit 2012-ben találtak belga és japán kutatók az Antarktiszon.

Metszet az Asuka 12236 meteoritról.
Fotó: Carnegie Institution for Science/Conel M. O’D. Alexander

Dr. Daniel Glavin vezető kutató és társai analizálták a meteoritot és olyan aminosavakra bukkantak, mint a glicin, alanin, szerin, α-aminovajsav, izovalin, aszparaginsav és glutaminsav (a glicint, alanint, glutaminsavat és valint egyébként a kabai meteoritban is megtalálták – a szerk.).

A kabai meteorit, az első, melyben szerves anyagokat találtak.
Fotó: Sketchfab.com

Több bizonyíték is utal rá, hogy ennek a meteoritnak az eredeti kémiai összetétele örződött meg a legjobban az eddig talált kondritok közül. A meteorit belseje nagyon jól konzerválódott, mivel nagyon kevés víz és hő érte, ezért gyakorlatilag szinte eredeti formájában maradt meg.

Az aminosavak létrejöttéhez szügséges víz abban az aszteroidában lehetett, amiből az Asuka 12236 leszakadt, a kellő hő pedig radioaktív bomlás során keletkezett. Mivel az Asuka 12236 ilyen jó állapotban megmaradt, valószínűleg az aszteroida külső rétegéből származik, ahol elegendő meleg és víz érte.

Érdekesség még, hogy a meteoritban talált aminosavak többsége bal oldali molekulát alkot. A földi élet is ilyen aminosavakat használ a proteinek felépítéséhez.

Ez azt mutatja, hogy valami oknál fogva ez a fajta molekula van többségben az űrben is, egyelőre még nem tudni miért. Ezen molekulák kialakulásához több vízre van szükség. Az eredeti cikk a Meteoritics and Planetary Science magazinban jelent meg.

Bolygós rövidhírek: foszfin a Vénuszon

Szerző: Kovács Gergő

Brit és amerikai kutatók bejelentették, hogy egy potenciális biomarkert, foszfor-hidrogént, másik nevén foszfint (PH3) találtak a Vénusz bolygó légkörében. E vegyületet, melyre a földönkívüli élet egyik jelzővegyületeként is tekinthetünk, a hawaii JCMT és a chilei ALMA rádiótávcsövekkel találták meg a planéta légkörében. A kutatók vélekedése szerint a foszfint a Vénusz légkörében élő, oxigénmentes (anaerob) környezetben élő, eddig ismeretlen mikroorganizmusok állíthatják elő.

A foszfin molekulái a Vénusz légkörében. Illusztráció:
ESO/M. Kornmesser/L. Calçada & NASA/JPL/Caltech

Le kell szögezni azonban, hogy a foszfin nemcsak biológiai úton keletkezhet: e vegyület nagy mennyiségben van jelen például a Jupiter légkörében, ahol nagy hőmérsékleten és nyomáson keletkezik. Így még jó ideig nem jelenthetjük ki minden kétséget kizáróan, hogy életet találtunk a Vénuszon: ha a foszfin nem biológiai úton keletkezik a bolygó légkörében, akkor egy eddig teljesen ismeretlen természeti jelenség áll az anyag keletkezésének a hátterében.

Forrás:
Royal Astronomical Society
Liebertpub.com
Nature.com
Qubit.hu

Könyvajánló: Van-e élet a Földön kívül?

Johannes Dorschner könyve egy, az embert már régóta foglalkoztató kérdésre keresi a választ: “Egyedül vagyunk a Világegyetemben?

Van-e élet a Földön kívül? Gondolat Zsebkönyvek, 1975. ISBN 963-280-111-3

A szerző a problémafelvetés után felvázolja többek között az extraterresztiális élet számunkra elérhető bizonyítékait, bemutatja a földi élet keletkezését, ismerteti a Naprendszer égitestjeit asztrobiológiai szemszögből, betekintést nyújt a rádióhullámok természetébe, illetve bemutatja a szupercivilizációk egyik lehetséges osztályzását.

Érdemes beszerezni!

A Kardasov skála – szupercivilizációk osztályzása

2019. augusztus 3-án hunyt el Nyikolaj Kardasov SETI-kutató, az Orosz Tudományos Akadémia rendes tagja. Nevéhez fűződik többek között az általa 1964-ben kidolgozott és az ő nevét viselő Kardasov (külföldi szakirodalmakban Kardashev)-skála, mely a feltételezett földönkívüli (szuper)civilizációkat osztályozta, energiafelhasználásuk szerint. Mivel nem ismerünk egyetlen földönkívüli civilizációt sem, ezért e skála teljesen elméleti alapú, asztrobiológiai vonatkozása miatt azonban kötődik hozzánk és planetológiai irányvonalunkhoz.

Nyikolaj Kardasov (1932-2019)
Fotó: meti.org

Kardasov 1963-ban vizsgálta (a SETI keretein belül) a CTA-102 jelű kvazárt, mely az első szovjet erőfeszítés volt annak irányába, hogy földönkívüli értelmes életet találjanak. Ekkor támadt az ötlete, miszerint energiafelhasználás tekintetében három fő fokozatba sorolja az egyes civilizációkat, melyek között nagyságrendbeli különbségek vannak:

Az I-es típusba tartozó a bolygóra a napjából érkező összes energiát képes felhasználni. Ez hozzátevőlegesen 10^16 Watt energiát jelent. Az I-es típusú civilizáció a bolygóján elérhető összes energiaforrás felett képes rendelkezni, úgy, mint napenergia, szél, geotermikus és vízenergia, földrengések, atomenergia. Képes továbbá fedezni saját növekvő energiaigényét.

/Freeman Dyson (1923-2020)
Fotó: ioerror – Flickr
CC-BY-SA

A II-esbe tartozó civilizáció számára már nem elég a bolygóján fellelhető energiamennyiség, így az egész bolygórendszerének energiáját fogja igába, a csillag köré épített ún. Dyson-szférával, mellyel “felfogják” a csillagból érkező összes energiát. A Freeman Dyson amerikai fizikus által feltételezett kozmikus megastruktúra az egyik elképzelés arra nézve, hogy miként lehet képes egy civilizáció csillagának egész “energiaoutputját” felfogni és hasznosítani. Dyson alapgondolata szerint, ha az emberiség a Föld (vagy egy másik bolygó) anyagát gömbhéjjá alakítaná, minden oldalról körbevéve a Napot, azzal ideális feltételeket biztosítana magának a szupercivilizációvá fejlődéshez. Egy másik, a Dyson-szférához hasonló elgondolás a “Dyson-raj“, melynél a csillag energiáját az égitest körül egymástól függetlenül keringő “napelemek raja” fogná fel. A II-es típusba sorolható civilizációk energiafelhasználása már körülbelül 10^26 Watt.

Utópisztikus jelenet: a II-es típusba tartozó civilizáció Dyson-szférát épít csillaga köré, hogy felfogja annak energiáját. Fotó: sentientdevelopments.com

A skála III-as típusába már az a civilizáció tartozik, mely túltesz az első kettőn, és egyenesen egy egész galaxis összes csillagának energiatermelését uralja, ami megközelítőleg 10^46 Watt energiát jelent. Egy ilyen civilizáció már elérte a halhatatlanságot, képes saját genetikai kódját felülírni, és vélhetően olyan mértékben képes kontrollálni egy több száz milliárd csillagból álló rendszer energiáját, amit mi elképzelni sem tudunk.

Százmilliárdnyi csillag: Egy III-as típusú civilizáció számára már semmi sem lehetetlen.
(Fotó: Wikipedia)

Az emberiség ezen a skálán jelenleg 0,7-0,75 között van, ami körülbelül 10^13 Watt. Ahhoz, hogy I-es típusú civilizációvá fejlődjünk, energiatermelésünket nem kevesebb, mint 100000-szeresére kellene növelnünk! Az elkövetkezendő egy-két évszázad folyamán fog kiderülni, hogy az emberi faj képes lesz-e radikális gazdasági és társadalmi reformok árán I-es típusú civilizációvá fejlődni, vagy pedig a kihalás útjára lép…

Források: [1] [2] [3] [4] [5] [6]