Őseink aszteroida-becsapódás miatt jöhettek le a fáról

Szerző: Ivanics-Rieger Klaudia

Amikor 66 millió évvel ezelőtt egy aszteroida becsapódott, és kiirtotta a nem madár-szerű dinoszauruszokat, illetve a földi élőlények háromnegyedét, a főemlősök és az erszényesek ekkor még egyedüliként a fán élő emlősök közé tartoztak. A fán élő fajokat pedig különösen veszélyeztette az aszteroida becsapódása miatt kialakult erdőtüzek által okozott pusztítás. Egy új tanulmányban a számítógépes modellek, fosszilis minták és ma is élő emlősöktől származó genetikai információk feltárják, hogy – bár a túlélő emlősök többsége nem függött úgy a fáktól – az a néhány fán élő emlősfaj (mint az ember ősei is) elég alkalmazkodó volt, hogy túlélje a veszteséget. A tanulmány rámutat a kréta-tercier (K-T) határként ismert kihalási eseménynek az emlősök korai evolúciójára és diverzifikációjára gyakorolt ​​hatására. „Az egyik lehetséges magyarázata annak, hogy a főemlősök hogyan élték túl a K-T eseményt – annak ellenére, hogy fákon élő lények voltak – bizonyos viselkedési rugalmasságnak tulajdonítható, ami kritikus tényező lehetett a túlélésükben.” – nyilatkozta Jonathan Hughes, tudományos munkatárs. ­– „A legkorábbi emlősök nagyjából 300 millió évvel ezelőtt jelentek meg, és a virágzó növények terjeszkedésével párhuzamosan diverzifikálódhattak körülbelül 20 millió évvel a K-T esemény előtt. Amikor az aszteroida becsapódott, az emlősök közül sok elpusztult. Ugyanakkor a túlélő emlősök kitöltöttek minden új ökológiai rést, amelyek akkor nyíltak meg, amikor a dinoszauruszok és más fajok kihaltak.” – fejezte be Hughes.

A tanulmányban a kutatók megvizsgálták a filogenetikai, vagyis a különböző élőlénycsoportok közötti evolúciós rokonságokat az emlősök között. Ezután az egyes, ma is élő emlősöket három kategóriába sorolták a preferált élőhelyük alapján: fán lakó, félig fán lakó és talajlakó. Olyan számítógépes modelleket is terveztek, amelyek rekonstruálták az emlősök evolúciós történetét. A K-T réteg környékéről származó emlőskövületek nagyon ritkák és nehezen használhatók fel az állatok élőhely-preferenciájának értelmezésére. A kutatók összehasonlították az élő emlősöktől ismert információkat a rendelkezésre álló kövületekkel, hogy ezekből további következtetéseket vonjanak le. Általában a modellek azt mutatták, hogy a túlélő fajok túlnyomórészt nem fán lakó voltak, de akadt két lehetséges kivétel: a főemlősök és az erszényes állatok ősei. A főemlős ősökről és legközelebbi rokonairól minden modellben azt találták, hogy közvetlenül a K-T esemény előtt is fán éltek. A modellrekonstrukciók felénél az erszényes ősökről is kiderült, hogy fán élők voltak.  A kutatók azt is megvizsgálták, hogy az emlősök csoportja hogyan változhatott az idők során. Hughes végül így zárta a nyilatkozatát: „Kiderült, hogy a K-T eseményt megelőző szűk időszakban nagy kiugrás történt. A fán élő és félig fán élő fajok nagyon gyorsan átköltözködtek a fátlan területekre és talajlakó élőlényekké váltak.”

Napfogyatkozás a Déli-sarkon

2021. december 4-én, magyar idő szerint reggel fél héttől fél tizenegyig zajlott az év utolsó, teljes napfogyatkozása, mégpedig az Antarktiszon. A napfogyatkozások ciklusában, az ún. Szárosz-ciklusban ez a fogyatkozás a 152-es Szárosz-család 13. tagja volt. A teljes fogyatkozás két percnél rövidebb ideig tartott, a totalitás sávja az Atlanti-óceán legdélebbi részén, a Weddell-tengeren, az Antarktisz nyugati felén, a Marie Byrd-földön, és az Amundsen-tengeren volt látható. Különlegessége, hogy a Hold árnyéka keletről nyugatra haladt, míg normális esetben nyugatról keletre halad. Ez csupán a sarkvidéki régiókban történhet meg.

A fogyatkozás sávja. Forrás: Eclipse Predictions by Fred Espenak, NASA’s GSFC – http://eclipse.gsfc.nasa.gov/
Az év utolsó napfogyatkozása repülőgépről szemlélve.
Fotó: Petr Horálek/Institute of Physics in Opava

A fogyatkozást a Galileo Webcast is közvetítette (NASA Live Feed):

A jelenséget egy két fős magyar csapat, az Eclipseman is megörökítette:

A jövő év első (részleges) napfogyatkozása április 22-én; míg az első, hazánkból is látható (részleges) napfogyatkozás október 25-én lesz.

Forrás:
http://saros139.hu/eclipse/TSE2021dec04.htm
https://en.wikipedia.org/wiki/Solar_eclipse_of_December_4,_2021
https://www.facebook.com/PetrHoralekPhotography/photos/a.842176325897979/4602330533215854/

Decemberi bolygórandevú(k)

2021 utolsó hónapjának elején, a nyugati égen többszörös bolygóegyüttállásban gyönyörködhetünk: a Hold, Vénusz, Szaturnusz és Jupiter négyese több napon át is a napnyugta utáni égbolt ékköve lesz! A Vénusz-Jupiter-Szaturnusz bolygók szinte mozdulatlan hármasát Holdunk vékony, majd egyre növekvő sarlója egészíti ki december 6-10. között. Hatodikán a Hold leheletvékony sarlójától keletre a Vénusz fényes, sárga “csillaga” következik, mely kisebb távcsővel is elegáns sarlónak mutatkozik. Majd a Szaturnusz és a Jupiter következnek. A napok múlásával Holdunk vastagodó sarlója hol a Vénusz és Szaturnusz között, hol a Szaturnusz és Jupiter között, hol pedig a Jupiter mellett helyezkedik majd el. December 10-én pedig a négy égitest egymástól egyenlő távolságra fog elhelyezkedni. Ne hagyjuk ki ezt a több napos égi randevút!
(Képek forrása: Stellarium)

Szabadszemes üstökös lesz látható év végén…vagy mégsem?

Nemrég robbant a hír, miszerint az idén januárban felfedezett C/2021 A1 (Leonard) üstökös december közepén, tiszta égbolt esetén szabad szemes látványossággá válik, fényessége a 4 magnitúdót is elérheti. A helyzet azonban sajnos nem ennyire derűs. Csillagunk körül minden évben van 3-4 magnitúdós üstökös, a tavalyi, C/2020 F3 (NEOWISE) üstökös látványára azonban ne számítsunk.

A C/2021 A1 (Leonard) üstökös helyzete 2021. december elsején. Forrás: astro.vanbuitenen.nl

Miért? Sajnos az üstökös láthatósága a Nap közelsége miatt igencsak korlátozott lesz, legfőképp a földközelsége idejében. Az égitest megpillantására csak napnyugta után egy órával lenne minimális lehetőség, de az előrejelzések szerinti 4 magnitúdós fényessége rendkívül bizonytalanná teszi észlelhetőségét.

A C/2021 A1 üstökös elmozdulása. Forrás: Stellarium

Hogy mire számíthatunk, azt jól szemlélteti Stuart Atkinson montázsa a C/2020 F3 (NEOWISE) és a C/2021 A1 (Leonard) üstökösökről, mely képek ugyanazzal a 300 mm fókuszú objektívvel készültek. A NEOWISE legnagyobb kiterjedésében, míg a Leonard üstökös 2021. november 28-ai állapotában látható. Az előrejelzések, illetve Napunk közelsége miatt nem számíthatunk a tavalyi, káprázatos látványra.

A C/2020 F3 (NEOWISE) és a C/2021 A1 (Leonard) üstökösök összehasonlító montázsa.
Forrás: Stuart Atkinson

Naprendszerünkben minden évben számos üstököst lehet távcsövön keresztül, esetleg szabad szemmel megpillantani, de ezen égitesteknél hiba előre “megkongatni a szenzációharangot”.

Az üstökös jövőbeli pályája. Forrás: astro.vanbuitenen.nl

Apollo-holdkőzet testközelből

Szerző: Rezsabek Nándor

A NASA Apollo-missziói által Földünk hűséges kísérőjén gyűjtött, majd anyabolygónkra fuvarozott holdkőzetekhez szoros barátság fűz. A Magyar Természettudományi Múzeum (MTM) gyűjteményében levő Apollo-11 és -17 mintákról 2018-ban még a kiállítói téren kívüli hatalmas raktárrendszerből tudósítottam az Élet és Tudomány hasábjain (Holdszilánkok. Apollo kőzetminták a Természettudományi Múzeumban. 2018/45.). Ennek beharangozója blogoldalamon itt jelent meg: https://rezsabeknandor.blogspot.com/2018/10/apollo-holdkozetek-termeszettudomanyi_95.html. 2019-ben az évfordulós Apollo 50 tárlaton a felbecsülhetetlen értékű példányok, valamint a legnagyobb méretű-tömegű hazai holdi meteorit mellett megtisztelő módon saját holdkutatás-ereklyéim is kiállításra kerültek: https://rezsabeknandor.blogspot.com/2019/10/a-hold-opusz-es-relikviaim.html. A mostani hétvégén a Juhari Zsuzsanna-díj elismerő oklevelével jutalmazott blogoldalam pedig az Apollo-17 űrhajó legénysége által a Földre hozott holdkőzetről tudósít – testközelből!

Természetesen az MTM „A Hold felfedezése” címmel illetett időszaki kiállításának volt és van más vonatkozása is. A november 3-i megnyitón felvonultak a nemzetközi űrhajós kongresszus tagjai, a Holdra sosem jutott Puli rover manőverezett, nemcsak kiállítási tárgyként díszelgett, továbbá folyamatosan zajlottak és zajlanak a témában viszont kétségkívül szakértő Bérczi-Hargitai-Kereszturi planetológus-triumvirátus előadásai. A tárlaton látható továbbá az említett Apollo-11 és -17 goodwill, látványos Armstrong űrruhájának méretarányos 3D-es replikája. Sok az információ, és szerencsére a kiállított holdtérkép magyar vonatkozású elnevezései között a Hédervári-kráter is ott virít, viszont a hatalmas holdi panorámakép elől egy fotó kedvéért sem mozdul el a teremőr néni.

De lehet itt bármi, a lényeg a 70215,41 jelzetű holdi mare bazalt! Az eredeti, 70215-ös, 8110 g-os, 230x130x105 mm-es, mikrometeoritok becsapódásának nyomát őrző kőzetmintát 1972 decemberében a Derültség tengerének peremén, a Taurus-Littrow-völgyben a holdkomptól 60 m-re az a Harrison Schmitt geológus gyűjtötte, aki az első KUTATÓ volt a holdfelszínen. Ne feledjük (a számomra példaképként szolgáló Jack Schmitt kivételével), az Apollo-missziók katonai pilótákból űrhajóssá avanzsált tagjai (korábbi űrrepüléseik felkészítését leszámítva) természettudományos ismeretek, valamint terepi munka gyakorlatának híján voltak. A gondos kezek aztán már földi laboratóriumban vágták a 3,84 milliárd éves magmás kőzetet, geokémiai, ásvány- és kőzettani vizsgálatain túl darabjait tudományos kísérletekre is felhasználtak. Kémiailag a szilícium-dioxid (SiO2) mellett magas titán-dioxid (TiO2) tartalma érdemel figyelmet, valamint vas-oxidot (FeO) tartalmaz legnagyobb arányban. Ásványtani szempontból a piroxén, a plagioklász és az olivin a meghatározó.

Az Amerikai Egyesült Államok kormánya által támogatott, belsős és külsős kurátorok-kreátorok, valamint közreműködő partnerek révén megvalósult tárlat a Magyar Természettudományi Múzeum (1083 Budapest, Ludovika tér 2-6.) Kupolacsarnokában az év végéig védettségi igazolvány felmutatásával a nyitvatartási időben díjmentesen látogatható. A kiállított 120 g-os 70215,41 kifejezetten bemutató célokat szolgál, valódi „rock star”-ként turnézza körül a Földet. Ne mulasszuk el magyarországi vendégszereplését.

Űrhajósok Budapesten

Szerző: Balázs Gábor

2021. november 1-5 között zajlott a Nemzetközi Űrhajós Szövetség 33. kongresszusa. A rendezvényt Magyarország másodszor rendezhette meg, először 1986-ban adott otthont hazánk a kongresszusnak. Ebben a cikkben a kongresszus az “Űrhajósok a Műegyetemen” elevezésű november 3-ai eseményéről, annak is a BME-n megrendezett részéről lesz szó, melyen én is részt vehettem. Az esemény célja, hogy közelebb hozza a középiskolás és egyetemista diákokat az űrhajózáshoz és az űrkutatáshoz, illetve hogy esetlegesen felkeltse az érdeklődést a téma iránt.

A szerdai nap folyamán az előadások mellett Schuminszky Nándor űrgyűjteményét és a legnagyobb magyar műhold, a RadCube szemléltetési célú makettjét tekinthettük meg, de űripari cégek is képviseltették magukat ezen a napon.

Az űrhajósok és a rendezvény fő üzenete

A szerdai budapesti eseményen hét űrhajóssal találkozhattak a jelenlévők. Az USA-ból Mary Ellen Webber és Jan Davis, Oroszországból Oleg Kotov és Valerij Tokarev, Kanadából Julie Payette, Németországból Ulrich Walter és magyar részről Farkas Bertalan voltak jelen.

Ulrich Walterrel

Az előadások során és a jelenlévők által az űrhajósoknak feltett kérdések nyomán szó esett az űrben zajló kutatói tevékenységről, az emberi testre és pszichére ható tényezőkről és ezek a visszatérés utáni hatásáról, a marsutazás mikéntjéről és ennek nehézségeiről, a jövőben tervezett eseményekről. Az első előadás végeztével Dr. Ferencz Orsolya űrkutatásért felelős miniszteri biztostól a következő magyar űrhajós kiválasztási folyamatáról tudhattunk meg információkat.

Egy majdnem sarki fény nyomában

Szerző: Kocsis Erzsó

Október 28-ára egy ősz végi, igazán impozáns napkitörést prognosztizáltak az előjelzések. Azon a csütörtökön 17 óra 35 perckor megtörtént az X1-es erősségű napkitörés. Szombatra pedig a NOAA (a Nemzeti Óceán- és Légkörkutatási Hivatal – National Oceanic and Atmospheric Administration) SWPC (Űridőjárás-előrejelző Központ – Space Weather Prediction Center) az ötfokozatú skálán G3-as erősségű geomágneses vihart vetített elő.

Ez év júliusában volt hasonló történés. Azóta tudjuk, hogy hiába ácsorogtunk volna a hazai erkélyeken, nem láthattuk volna az aurora borealis szeszélyes táncát magyar égbolton. Ám mielőtt belemerülnénk, mi volt az, amit végülis nem láttunk, egy rövid áttekintés: a Nap felszíne alatti, egy kb. 200000 km vastag rétegben igen viharos, turbulens események történnek.

Ezek hozzák létre azt a mágneses teret, aminek szerkezete, időbeli változása további folyamatokat generál. Ez a dinamómechanizmus, ami mechanikai energiából elektromágneses energiát termel. Ennek köszönhető, hogy egy bizonyos helyen a mágneses tér iránya a maximális térerősség alatt megközelítőleg kelet-nyugati irányú (toroidális tér), ám a minimális térerősségnél a pólusok irányába mutató (poloidális tér). A naptevékenység emiatt fog 11 éves ciklusokban változó erősséget produkálni. A mostani 25. ciklus a 2019. decemberi minimummal indult, és előre láthatóan 2025. nyarán fog tetőzni. A napkitörés tehát nem más, mint hirtelen energia-felszabadulás. A mágneses tér újraformálódása történik az aktív vidék felsőbb rétegeiben, elsősorban a kromoszférában. Mind a részecskesugárzás, mind az elektromágneses sugárzás növekszik ekkor a naplégkör egy bizonyos területén. A csillagunk felületén lejátszódó események közé tartoznak a napkitörések, azaz a flerek.

Ezeket először 1859-ben Carrington angol csillagász észlelte. Hale pedig 1892-ben figyelte meg spektroheliográfiával a flereket. Nagyobb napkitörések általában a napfoltcsoport közepén, a mágneses polaritásokat elválasztó nullavonal két-két oldalán alakul ki. Földünkön több hullámban jelennek meg a napkitörés okozta zavarok. A fénysebességgel haladó rádióhullámok körülbelül 7-8 perc alatt érik el bolygónkat, majd a következő hullámmal érkező töltött részecskék 2-3 nappal múlva lesznek érzékelhető hatással. A napkitöréseket egy betűrendszer szerint osztályozzák. A C-osztályú viharok elég gyengék, az M-osztályúak erősebbek, az X-osztályúak pedig a legintenzívebbek. Az X2 kétszer annyira, mint az X1, az X3 háromszor annyira intenzív stb. Ha közvetlenül a Föld felé irányulnak, a legerősebb X-osztályú kitörések szoktak zavart okozni a rádió- és műholdas kommunikációban, és felerősíthetik az aurora borealist. A K-indexet, és ezen keresztül a bolygó K-indexét a geomágneses viharok nagyságának leírására használják. Ez megmutatja bolygónk mágneses mezejében bekövetkező zavarokat. Az SWPC arra használja, hogy eldöntse, ki kell-e adnia geomágneses riasztást – , illetve figyelmeztetést az érintett felhasználóknak. Tehát 1859-ben volt a legelső dokumentált észlelés. Szeptember 1-jén 11:18-kor Richard Carrington napcsillagász távcsövén keresztül figyelte meg, majd vázolta fel a napfoltokat. Ez a kitörés volt az elmúlt 500 év legnagyobb dokumentált napvihara. Az azt követő sarki fényt még a Karib-térségben is látni lehetett.

Súlyos fennakadásokat okozott a globális távíró-kommunikációban is. Az 1972. augusztus 4-ei nagy napkitörés az USA néhány államában (pl Illinois) megszakította a távolsági telefonos kommunikációt. Az 1989 márciusi pedig kilenc órán át tartó áramszünetet okozott Kanadában. 2000. július 14-én egy X5-ös fokozatú néhány műhold rövidzárlatát okozta.  2003. október 28-ai olyan intenzív volt, hogy az űrszonda érzékelőjét is túlterhelte. Nem is csoda, hiszen a NASA szerint körülbelül X45-ös csúcserősséget ért el. 2006. december 5-ei körülbelül 10 percre megzavarta a műholdak és a Föld közötti kommunikációt, valamint a globális helymeghatározó rendszer (GPS) navigációs jeleit. Október 28-án csillagunk jelenlegi ciklusának egyik legerősebb viharát vártuk. A X1-es osztályú napkitörés 15:35 (GMT) érte el a csúcspontját. Ez átmeneti, erős rádiós áramszünetet okozott például Dél-Amerika közepén. A kitörésből származó koronális tömegkilövellések szombaton vagy vasárnap (október 30-31.) érték el a Földet. Erős geomágneses viharával kissé megzavarva a műholdas kommunikációt. Ennek köszönhettük a szebbnél-szebb sarki fényes képeket skandináv barátainktól – már attól, aki volt oly szerencsés, hogy nem csak a felhőket fotózhatta…C. Alex Young, a NASA tudományos igazgatóhelyettese szerint (marylandi Goddard Űrrepülési Központjának heliofizikai részlege) ezt a napkitörést egy koronális tömegkitörés (CME) kísérte. Ez az AR2887 nevű aktív napfoltból indult, ami most éppen a Nap közepén helyezkedik el. Egy másik aktív napfolt, az AR2891 október 24-én egy közepes, M-osztályú napkitörést okozott. Ez is átmeneti rádiókimaradást eredményezett a magas frekvenciákon, valamint GPS-kimaradást az alacsony frekvenciájú jeleket használó eszközöknél. Az elkövetkezőkben egyre több űridőjárási hatást tapasztalhatunk, ahogy haladunk a napmaximum felé. A Napunk bármikor képes meglepetést okozni egy-egy váratlan nagyobb kitöréssel. 2024-2025-ig akár még valóban ácsorogtunk a hazai erkélyeken, látva az aurora borealis szeszélyes táncát magyar égbolton.

Források:

https://www.swpc.noaa.gov/news/x1-flare-r3-radio-blackout-event-28-october-2021?fbclid=IwAR0VEQ4HuOIkCBXduSz8I34hsQY2AxplIxCW0CVKpGili7erlPjuhPrdLng
https://www.swpc.noaa.gov/news/x1-flare-r3-radio-blackout-event-28-october-2021?fbclid=IwAR269dPvyhY_N8fyRa_up36VKfXIX1KgzD8nlYSp8WEHdZIaeRtC3Eq2aqg
https://www.space.com/sun-unleashes-major-x-class-solar-flare-october-2021
https://www.space.com/12584-worst-solar-storms-sun-flares-history.html
https://hu.wikipedia.org/wiki/Nemzeti_%C3%93ce%C3%A1n-_%C3%A9s_L%C3%A9gk%C3%B6rkutat%C3%A1si_Hivatal
https://mek.oszk.hu/00500/00560/html/kleint2.htm
https://www.idokep.hu/hirek/eros-napkitores-tortent

A fiatal Hold korábban gondoltnál hevesebb becsapódásai

Szerző: Rezes Dániel

A becsapódások a Föld-Hold rendszer fejlődésében jelentős szerepet játszottak, azonban számos jel mutat arra, hogy a Földünk égi kísérőjének korai időszakában keletkezett krátereknek nyoma veszhetett a későbbi becsapódások során. Ez olyan bizonyítékok alapján feltételezhető, mint a kráterek korolása, a kisbolygók dinamikája, holdi kőzetminták, a becsapódásos medencékre (hatalmas impakt kráterek) kidolgozott modellek és a Hold fejlődésére vonatkozó modellek. Egy új kutatás kimutatta, hogy sok – a Déli-Sark-Aitken-medencéhez hasonló – ősi impakt medence már akkor létrejöhetett, amikor a Holdi Magma Óceán (LMO, Lunar Magma Ocean) még képlékeny állapotában volt.

A holdi Déli-Sark-Aitken-medence. A fekete kör a kráter alakjára korábban gondolt megközelítés, míg a szürke és lila ellipszisek (külső és belső gyűrű) már a krátermorfológia modernebb megközelítését jelölik. Forrás: Wikipedia/Ittiz; CC BY-SA 3.0

A Holdi Magma Óceán modell a kőzetbolygók fejlődésére vonatkozó, mai napig a tudományos világban legelfogadottabb megközelítés, melyet először 1970-ben Wood és munkatársai, valamint Smith és munkatársai írtak le és neveztek el. A modell egy olyan folyamatot ír le, melyben a nagymértékben olvadt Holdból kialakult egy teljesen megszilárdul égitest, elkülönült a mag, köpeny és kéreg, vagyis kialakult a napjainkban is ismert égitest. A hűlési folyamatnak a hossza Elkins-Tanton és munkatársainak 2011-ben publikált cikke alapján több tízmillió éves időskálán mérhető, azonban fontos megjegyezni, hogy a kutatók között nincs egyetértés ennek időbeliségében, a különböző modellek néhány millió év és 200 millió év közötti időskálán mozognak.

A holdi Hagma Óceán fantáziaképe
(NASA Goddard Space Flight Center)

A becsapódások hatására létrejött kráterek alakja jelentősen eltér az LMO keletkezése közben és a megszilárdulása utáni időszakban. Ez a különbözőség azért lehetséges, mert ha egy kisbolygó vagy egyéb kisebb égitest puha felszínre érkezik, akkor annak kevesebb lenyomata marad, mint ha kemény felszínt érne. Ez azt jelenti, hogy kevés geológiai és geofizikai nyoma marad annak, hogy becsapódás történt az adott térszínen. Az idő előrehaladtával a Hold anyaga megszilárdult és ezáltal a becsapódások távérzékeléssel már azonosítható alakzatokat voltak képesek maguk után hagyni.

„Kötelességünk, hogy megértsük a Naprendszer történetének legkorábbi fejezeteiben végbement heves bombázást és a kráterezettségi adatokat annak érdekében, hogy kiegészítsük a bolygók kialakulásának és fejlődésének történetét.” – nyilatkozta Dr. Miljkovic, a tanulmány első szerzője.

Az Apollo-8 képe a Déli-Sark-Aitken-medence északi határán húzódó hegyekről (NASA)

A kisbolygók dinamikáját a holdi fejlődésre vonatkozó modellek összevetésével Dr. Miljkovic és csapata arra a következtetésre jutott, hogy a Hold elveszthette a legkorábbi becsapódásaira utaló nyomokat. A tanulmányban kísérletet tettek a kutatók, hogy felfedjék az ellentmondásokat az elméletek és a kráterezettségből származó megfigyelések között, ezzel rámutatva arra, hogy még várnak ránk megértésre szoruló elemek a Hold történetében.

A következtetéseket a jövőben át lehet fordítani a korai földi folyamatokra is, mely elvezet minket a fiatal bolygónkat ért becsapódásos események megértésére és arra, hogy azok hogyan hatottak a Föld későbbi fejlődésére.

Források:

[1] http://www.sci-news.com/space/young-moon-bombardment-10065.html
[2] Miljković, K., Wieczorek, M. A., Laneuville, M., Nemchin, A., Bland, P. A., & Zuber, M. T. (2021). Large impact cratering during lunar magma ocean solidification. Nature Communications, 12(1), 1-6.
[3] Rezes, D. (2021). Az NWA 13637 holdi meteorit kőzettani és geokémiai vizsgálati eredményei. Diplomamunka, Eötvös Loránd Tudományegyetem, Kőzettan-Geokémiai Tanszék, Budapest, 122 p.
[4] Smith, J.V., Anderson, A.T., Newton, R.C., Olsen, E.J., Wyllie, P.J., Crewe, A.V., Isaacson, M.S., & Johnson, D. (1970). Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. Proceedings of the Apollo 11 Lunar Science Conference, 1, 897-925.
[5] Wood, J. A., Dickey Jr, J. S., Marvin, U. B., & Powell, B. N. (1970). Lunar anorthosites and a geophysical model of the moon. Geochimica et Cosmochimica Acta Supplement, 1, 965-988.
[6] Elkins-Tanton, L. T., Burgess, S., & Yin, Q. Z. (2011). The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology. Earth and Planetary Science Letters, 304(3-4), 326-336.

A VIPER küldetés – A NASA visszatérése a Holdra

Szerző: Gombai Norbert

Immár több, mint 50 éve, hogy Neil Armstrong az Apollo 11 parancsnokaként kimászott a „Sas” névre keresztelt leszálló modul szűk nyílásán és egy „kis lépéssel” megvetette lábát a Holdon. Az Apollo program utolsó küldetése 1972-ben, az Apollo-17 volt. Ezután a hatalmas költségek miatt leállították a küldetéseket és embert szállító misszió nem indult többet égi kísérőnk felszínére.

A NASA 2017-ben jelentette be az Artemis programot, amelynek célja, hogy újra embert juttasson a Holdra sőt, állandó és fenntartható holdbázist alakítson ki annak felszínén. A hosszútávú célok között nem titkoltan a magánvállalatok bevonásával történő tudományos, gazdasági és bányászati tevékenységek is szerepelnek. Az Artemis program nem csak az emberiség Holdra való visszatéréséről szól. A missziók alatt összegyűjtött ismeretek és tapasztalatok nagyban segíteni fogják a közel(?)jövő Mars küldetéseit is.

Forrás: NASA

Az Artemis egy rendkívül összetett, nagyszabású program számos misszióval és alprojekttel, amelyek közül több már megvalósult, illetve jelenleg is folyamatban van. Ilyen projekt a kis és közepes méretű rakományok eljuttatása a Hold felszínére magáncégek segítségével (CLPS – Commercial Lunar Payload Services  – kereskedelmi célú hasznos teherszállítási szolgáltatás), amelynek részeként például az Astrobotic Technology magáncég Peregrine-nek nevezett leszálló egysége fogja a Holdra szállítani a magyar Puli Space Technologies mini roverét is.

Forrás: NASA

Néhány napja, szeptember 20-án hétfőn a NASA bejelentette az Artemis program egy újabb küldetésének leszállási helyét.

A VIPER (Volatiles Investigating Polar Exploration Rover –  illékony anyagokat vizsgáló sarki felfedező rover) misszió célja, hogy egy önjáró robot segítségével vízjég után kutasson a Hold déli pólusa közelében fekvő és állandóan árnyékban levő területeken. Konkrét landolási és kutatási helyszínként a Nobile-kráter nyugati pereménél elterülő 93 négyzetkilométeres részt jelölték meg. A NASA négy szempont alapján választotta ki a végső helyszínt:

  • Közvetlen rálátás a Földre, ami műholdas átjátszás nélküli kommunikációt biztosít.
  • A napfényhez való hozzáférés a rendszerek működtetéséhez szükséges napenergia előállításához.
  • A megfelelő terepviszonyok.
  • A várhatóan vízjeget tartalmazó helyszín tudományos értéke.

További három kutatóhely is szóba került a kiválasztási folyamat során. A Haworth-kráter, a Shackleton- és a de Gerlache-kráterek között húzódó gerinc, valamint a Shoemaker-kráter is versenyben voltak,  azonban a vizsgálatok alapján a Nobile-kráter felelt meg legjobban a kutatók és mérnökök által meghatározott feltételeknek.

“Miután a VIPER leszállt a Hold felszínére a déli pólus környékén víz és más erőforrások jelenlétére vonatkozó méréseket fog végezni.” – nyilatkozta nemrégiben Thomas Zurbuchen asztrofizikus, a NASA Science Mission Directorate megbízott igazgatója. “A VIPER által visszaküldött adatok világszerte további betekintést nyújtanak majd a holdkutatóknak Holdunk kozmikus eredetébe, fejlődésébe és történetébe.”

A VIPER holdjáró által összegyűjtött és Földre továbbított információ nemcsak azt segít majd megjósolni, hogy a hasonló terepviszonyok alapján hol található vízjég a Holdon, hanem egy globális holdi erőforrástérkép elkészítéséhez is hozzájárul majd. A golfautó nagyságú rover hat különböző helyszínt fog felkeresni a tervek szerint, összesen mintegy 16-24 km távolságot megtéve. A kutatók legalább három próbafúrást és mintavételt fognak végrehajtani a VIPER egy méter mélyre is leásni képes Trident fúrófejével. A küldetés tervezett időtartama 100 nap lesz, aminek bizonyos részében a 430 kg-os VIPER teljes sötétségben, akkumulátorai feltöltése nélkül kell, hogy üzemeljen. Fontos érdekesség, hogy a marsjáróktól eltérően a VIPER-rel szinte megszakítás mentesen tudnak majd kommunikálni az irányítóközpontból.

A VIPER projekt a korábban tervezett, ám 2018-ban törölt Resource Prospector küldetés utódja. A missziót a NASA már fentebb említett CLPS kezdeményezésének keretében élesztették újjá. A már ugyancsak említett Astrobotic Technology fejleszti a rovert Holdra juttató Griffin leszállóegységet, amit az Elon Musk által alapított SpaceX vállalat Falcon Heavy hordozórakétája fog elrepíteni a célig.

Miért olyan fontos, hogy van-e vízjég a Holdon?

Az indiai Chandrayaan 1 orbiter és a NASA LCROSS holdkráter megfigyelő és érzékelő műholdja hidroxid létezésére utaló nyomokat észleltek a holdi pólusokon, amiből vízjég jelenlétére következtethetünk az olyan állandóan árnyékos, napfénytől védett területeken, mint például a kráterek alja. Az ősi üstökösbecsapódások következtében a felszínen felhalmozódott nagy mennyiségű vízjég értékes, létfontosságú erőforrást jelenthet a jövő űrhajósai számára. A VIPER rover fedélzetén lévő műszerek célja, hogy vízjeget találjanak a Hold felszínen, vagy alatta. A Honeybee Robotics által fejlesztett TRIDENT (Regolith and Ice Drill for Exploring New Terrains) elnevezésű fúrókar képes akár egy méter mélyről is felszínre hozni a mintát további elemzés céljából. A talajmintákat az alábbi három műszerrel vizsgálja meg a holdjáró:

  • Mass Spectrometer Observing Lunar Operations (Msolo) – Illékony anyagok (például a vízjég),  ásványi összetétel elemzésére és az ionok tömeg-töltés arányának mérésére alkalmas spektrométer.
  • Near InfraRed Volatiles Spectrometer System (NIRVSS) – Eredetileg a Resource Prospectorhoz kifejlesztett műszer, amely a mintákban fellelhető illékony anyagok elemzésére (például, hogy az érzékelt hidrogén atomok vízmolekulákhoz, vagy hidroxilhoz kapcsolódnak-e), valamint a kőzetminta ásványi anyag összetétel vizsgálatára szolgál. A redszer része egy széles spektrumú, a fúrót figyelő kamera, valamint a felszín hőmérsékletét nagyon kis léptékben érzékelni képes szenzor is.
  • Neutron Spectrometer System (NSS) – Érzékeny neutron spektrométer-rendszer, amely a vizet 10 milliomodrésznyi érzékenységig képes kimutatni.
Forrás: NASA

A VIPER navigációs kamerákkal, sztereokamerákkal és a veszélyes tereptárgyak észlelésére és elkerülésére szolgáló kamerákkal is fel lesz szerelve. A rover várhatóan hosszú éles árnyékokkal és sötét völgyekkel tagolt,  állandó szürkületben lévő holdi tájat fog dokumentálni, amely teljesen eltér majd a korábbi leszállóhelyek fény és terepviszonyaitól.

Forrás: NASA

A Curiosity és a Perseverance mars roverek futómű rendszereivel ellentétben a VIPER négy keréken fut, amelyek mindegyike független felfüggesztéssel és aktív kormányzással rendelkezik. Ez lehetővé teszi a holdjáró oldalirányú mozgatását is. A VIPER kétfajta sebességgel tud haladni. A lassú, 10 cm/másodperc sebességet a tudományos műveletek során használják majd, míg ennek kétszeresével a pontról pontra való haladáskor mozgatják a holdjárót.

Forrás: NASA

A VIPER lesz a NASA első automata rovere a Holdon. Landolását 2023. második felére tervezik. Előtte azonban több holdraszállási kísérletre is sor kerülhet még. A már említett CLPS-missziókra, az Astrobotic Peregrine Lander és az Intuitive Machines Nova-C Lander jóvoltából akár már jövőre sor kerülhet. Oroszország azt reméli, hogy 2022-ben a Holdra küldheti Luna 25 nevű leszállóegységét, és a Japán Űrkutatási Ügynökség is tervezi a Smart Lander for Investigating the Moon (SLIM) nevű holdi leszállóegység Holdra juttatását.

Forrás: Astrobotic.com

A feltörekvő űrhatalmak közül India és Izrael is újabb holdi küldetéseket tervez a 2019-es sikertelen leszállási kísérleteket követően. India a Chandrayaan 3-mal, Izrael pedig a Firefly Aerospace Genesis leszállóegységével száll majd be a „Hold-versenybe”.

A NASA 2025-ben a Lunar Trailblazer űrszondát küldi a Hold felszíni jegének feltérképezésére. A Trailblazer a NASA SIMPLEx programjának részét képező kisebb küldetésként a nagyobb napfizikai IMAP küldetéssel fog együtt utazni. A Hold körüli pályán is nagy forgalom várható. A NASA egyenlőre még tervezi a Space Launch System (SLS) rakéta első, személyzet nélküli repülését 2021 decemberében, amely megkerülve a Holdat 10 apró műholdat fog pályára állítani. Az SLS az a rakéta, amely végső soron az amerikai űrhajósokat viszi majd vissza a Holdra.

Ezt megelőzően azonban a CAPSTONE orbiter indul útnak 2021. október 20-án a NASA Wallops indítóközpontjából egy Rocket Lab Electron rakéta rakományaként. A CAPSTONE projekt a tervek szerint 2024-ig megépülő Lunar Gateway platform koncepcionális és technikai alapjait hivatott lerakni. A Lunar Gateway egy, a Hold körül keringő űrállomás lesz, amely tudományos laboratóriumként és mintegy tranzit állomásként fog szolgálni a jövő Hold, Mars és mélyűr küldetéseihez.

Forrás: NASA

Látható, hogy a holdkutatás és űrhajózás izgalmas évei állnak előttünk és a VIPER rover missziója a Nobile kráter sötét régióinak felfedezésére csak egy a sok rendkívül érdekes küldetés közül.

42 kicsi aszteroida

Új felvételek kerültek napvilágra a Mars és Jupiter közötti kisbolygóövezet 42 legnagyobb aszteroidájáról – számol be a sciencealert.com. Egy csillagászokból álló nemzetközi csapat az ESO VLT (Very Large Telescope – Nagyon Nagy Távcső) nevű óriásteleszkópja segítségével vadonatúj képeket készített ezen égitestekről.

“Idáig csupán három nagy, fő kisbolygóövezet-beli égitestről voltak nagy felbontású képeink, a Ceresről, a Vestáról és a Lutetiáról, melyeket a NASA és ESA Dawn és Rosetta missziók tártak fel számunkra.” – mondta Pierre Vernazza csillagász – “Megfigyeléseink jóval több égitestről készítettek éles képeket, összesen 42-ről.”

A 42 kisbolygó (teljes felbontásban elérhető itt). Forrás: (ESO/M. Kornmesser/Vernazza et al./MISTRAL algorithm/ONERA/CNRS)

Ez az új felmérés egy sokkal átfogóbb munka, célja az egyes égitestek kollektív tulajdonságainak vizsgálata, az egyedi jellemzőik helyett. Ezekhez új, háromdimenziós adatokat is felhasználnak, melyek segítenek feltárni ezen égitestek valódi alakját, illetve tömegét. Általánosságban elmondható, hogy ezek a kisbolygók két morfológiai kategóriába sorolhatók: egyik a kerekebb, másik pedig a hosszúkás égitesteket foglalja magába. Utóbbira a kutyacsont-alakú Kleopatra kisbolygó a legjobb példa. Az új adatok azt is feltárták, hogy az aszteroida két holdja, az Alexhelios és Cleoselene a Kleopatráról kilökődött anyagból születtek.

Érdekes, hogy ezek a kategóriák nincsenek összefüggésben az átmérővel. A 940 kilométeres Ceres egy megközelítőleg gömb alakú égitest, akárcsak a 434 kilométeres, törpebolygó-jelölt Hygeia; míg az 520 kilométeres Vesta és a 274 kilométeres Sylvia már szabálytalanabb alakú. A 146 kilométeres Flora és a 144 kilométeres Adeona már szintén közelebb állnak a gömbhöz.

Az új háromdimenziós adatok határozottabb kereteket biztosítottak a tudósok számára az égitestek térfogatának kiszámításához. Ha az égitest térfogata és tömege is ismert, kiszámíthatóvá válik a sűrűsége és az összetétele. Földünk sűrűsége átlagosan 5,51 g/cm3. A legkisebb sűrűségű aszteroida sűrűsége 1,3 g/cm3 (mely minden bizonnyal egy porózus, szenes összetételű kisbolygó), míg a legsűrűbbeké, a Psyche és a Kalliope, 3,9 g/cm3 és 4,4 g/cm3 (mely kő-vas összetételt sugall).

Ezek a mérések (is) azt sugallják, hogy a kisbolygóövezet különböző összetételű, és így különböző eredetű égitestjei merőben más helyekről származnak, mint jelenlegi tartózkodási helyük. “A megfigyeléseink egy jelentős bizonyítékot nyújtanak a kisbolygók létrejöttük utáni migrációira.” – véli Josef Hanuš, a csehországi Károly Egyetem munkatársa.