Bolygós rövidhírek: a Szaturnusz magja nagyobb, mint sejtették

Szerző: Rezes Dániel

A Szaturnusz magja nem csak egy kőzetekből és jégből felépülő összlet – mint ahogy sok kutató elképzelte – hanem egy olyan kiterjedt képződmény, mely hatalmas mennyiségű hidrogént és héliumot is tartalmaz. Ezt figyelembe véve a mag átmérője ~70000 km, mely a bolygó átmérőjének ~60 százalékát teszi ki – állítja új tanulmányában két amerikai kutató.

A legújabb kutatás szerint a bolygó magja nagyobb a feltételezettnél. Fotó: NASA/JPL/SSI

Naprendszerünk hatodik bolygója – melynek átmérője Földünk átmérőjének kilencszerese – egyedülállóan káprázatos és komplex gyűrűrendszerével kitűnik a Naprendszer többi gázbolygója közül. Több, mint 60 ismert holdja kivételes kutatási lehetőséget teremt a szakemberek számára, sok titkot őriznek napjainkban is. Nehéz elképzelni, de a Szaturnusz az egyetlen olyan bolygó a Naprendszerben, melynek átlagos sűrűsége kisebb a víznél. Az égitestnek a Földhöz hasonló a tengelyferdesége, így a Szaturnuszon is kialakulnak évszakok.

A Szaturnusz és gyűrűje a Cassini felvételén. Fotó: NASA

A Szaturnusz magjának szerkezeti meghatározásához a csillagász-asztrofizikus kutatópáros az égitest gyűrűit vizsgálta meg. Ahogy a földrengések segítenek a szeizmológusoknak a Föld belsejének vizsgálatában, úgy a Szaturnusz rengései is feltárják az égitest szerkezetének rejtett részleteit. Ezek a rengések megváltoztatják a bolygó gravitációs erejét, mely hullámokat kelt a gyűrűrendszerben, főképpen az égitesthez a három fő gyűrű közül legközelebb elhelyezkedő C jelűben. Az ebben a gyűrűben haladó hullám vizsgálata és a már nem üzemelő Cassini űrszondának a Szaturnusz gravitációs mezejére vonatkozó adatai által a kutatók kiszámolták, hogy a bolygó magjában tömörülő kőzeteknek, jégnek, hidrogénnek és héliumnak az együttes tömege 55 földtömeg. Ez a Szaturnusz teljes tömegének (95 földtömeg) több, mint a felét jelenti.

A Szaturnusz és belső szerkezete méretarányosan, az eddigi ismereteink alapján. Forrás: Wikipedia/Kelvinsong; CC BY-SA 3.0

A két kutató következtetése a Szaturnusz magjára vonatkozóan megerősíti azt az újabb elméletet, mely szerint 4,6 milliárd éve, a mag kőzetek és jég általi összeállásakor nagy mennyiségű gáz is jelen volt a rendszerben. Ahogy a mag további anyaggal gyarapodott, a gázból álló hányad felemelkedett. Emellett az eredmények arra a régi talányra is választ adhatnak, hogy a Szaturnusz miért bocsát ki több energiát annál, mint amennyit a Naptól kap. A bolygó rengéseinek típusa ugyanis arról árulkodik, hogy az égitest magja relatíve stabil.

Az új megfigyelések és felismerések nem csak azt segíthetnek megérteni, hogy hogyan keletkeztek a Naprendszer hatalmas gázbolygói, hanem a más csillagok körül keringő hasonló égitestek természetéről is tanúskodnak. A tanulmány eredményeinek megerősítéséhez a jövőben a gyűrűk további hullámainak vizsgálata szükséges.

Források:
[1] https://www.sciencenews.org/article/saturn-planet-core-fuzzy-ring-astronomy-space?fbclid=IwAR38pUCN1xdSL17hOkE1RjEdlYKM_1yDwQSHq-zrC2H1Mq9PM0jJuIEGbh4
[2] Mankovich, C., & Fuller, J. (2021). A diffuse core in Saturn revealed by ring seismology. arXiv preprint arXiv:2104.13385.
[3] https://solarsystem.nasa.gov/planets/saturn/in-depth/

Bolygós rövidhírek: volt-e valaha a Napnak „csillagtestvére”?

Szerző: Gombai Norbert

Dr. Avi Loeb csillagász, és Amir Siraj egyetemi hallgató a Harvard Egyetemről erre a kérdésre keresik a választ. 2020. augusztusában, a The Astrophysical Journal Letters című tudományos folyóiratban közzétett elméletük szerint elképzelhető, hogy központi csillagunknak a régmúltban volt egy hasonló tömegű kettős kísérője, amely ugyanabból a sűrű molekuláris gázfelhőből alakulhatott ki, mint a Nap.

De miért fontos és érdekes ez az elmélet? Persze azon kívül, hogy nagyon menő volna kikönyökölni a teraszra és a kettős naplementében gyönyörködni, hasonlóan a Csillagok Háborúja ikonikus jelenetéhez.

A kulcs az Oort-felhőben rejlik, illetve annak kialakulásában. Miért és hogyan alakult ki a Naprendszer távoli, külső peremén elhelyezkedő, sok milliárdnyi jeges szikladarabból és üstökösből álló törmelékfelhő?

Az Oort-felhő távolsága Napunktól Csillagászati Egységekben – a távolságot jelző vízszintes skála logaritmikus

Az általánosságban elfogadott elmélet szerint az Oort-felhő annak a protoplanetáris korongnak a maradványa, amelyből a Naprendszer égitestjei is képződtek. A felhő az elképzelések szerint két részből áll. A korong alakú belső felhőből, amelynek modelljét Jack G. Hills csillagász vetette fel saját, üstökös kutatási eredményeire alapozva a 80-as évek elején (a belső felhőt ezért Hills-felhőnek is nevezünk), valamint egy gömbszimmetrikus, úgynevezett külső Oort-felhőből. Az Oort-felhő belső pereme a Naptól kb. 2.000 CSE (1 csillagászati egység = Föld-Nap távolság, nagyjból 150 millió km) távolságban helyezkedik el, míg külső pereme kb. 10.000 CSE (egyes elképzelések szerint akár 100.000 CSE) távolságra tehető. Csak az összehasonlítás kedvéért a Plutó 30-50 CSE távolságra kering a központi csillagtól. Az Oort- felhőt alkotó főleg  víz-, metán- és etánjégből álló üstökösmagok és egyéb objektumok eredetileg a Naphoz sokkal közelebb jöttek létre, mígnem a nagybolygók gravitációs kölcsönhatásainak köszönhetően elnyújtott elliptikus, vagy parabolikus pályára álltak, a Naprendszer távoli vidékei felé lökődtek ki, olykor elhagyva a Nap gravitációs vonzáskörzetét. Az Oort-felhőt az azt alkotó objektumok közötti igen gyakori ütközések, a közeli csillagok gravitációs hatásai, átvonulásai, valamint a galaktikus ár-apály hatások is alakították.

Az Oort-felhő becsült távolsága a belső Naprendszerhez képest

A probléma ezzel a modellel az, hogy nem képes megnyugtatóan megmagyarázni a belső és külső Oort-felhő közötti anyageloszlás arányát. Loeb és Siraj szerint amint bevezetjük egy korai csillag-kísérő jelenlétét a modellbe nem csak közelebb kerülünk a megfigyelt állapothoz, de további érdekes kérdésekre is válaszokat kaphatunk.

Megfigyelési tapasztalatok szerint a Naphoz hasonló csillagok többnyire kettős rendszerekben fordulnak elő. A számítási modellek szerint a kettős csillagrendszerek sokkal hatékonyabbak az objektumok befogásában, mint az egyedülálló csillagok. Ha az elmélet helytálló és bizonyítást nyerne, hogy az Oort-felhő valóban egy korai Nap-kísérő csillag segítségével keletkezett, az jelentős következményekkel járna a Naprendszer kialakulásának eddig elfogadott elméletére vonatkozólag. Sőt, érdekes válaszokat adhatna az élet kialakulásával kapcsolatos kérdésekre is, hiszen az Oort-felhőben levő üstökösök jelentős szerepet játszhattak a Földi élet megjelenésében, például vizet és szállíthattak bolygónkra, vagy éppen a dinoszauruszok kihalását okozták.

Mi több, az elmélet hatással lehet a sokat emlegetett Kilencedik bolygó hipotézisre is. Egy, a Pluto pályáján túl keringő, akár Neptunusz méretű eleddig felfedezetlen égitestre, amelynek létezésére csak a Kuiper-öv bizonyos objektumainak egyedi pályaadataiból következtethetünk.

Természetesen az Oort-felhővel és a hipotetikus Kilencedik bolygóval (és lehetséges kísérőivel) kapcsolatos felvetések csak további megfigyelések útján nyerhetnek bizonyítást. A közvetlen fotografikus megfigyelések meglehetősen nagy kihívást jelentenek a csillagászok számára az óriási távolság, a hatalmas vizsgálandó terület, valamint a cél objektumok természete miatt. Mindazonáltal a chilei Vera C. Rubin Obszervatórium 8,4 m-es teleszkópja várhatóan idén megkezdi a Legacy Survey of Space and Time nevű programját, amelyben a tervek szerint a teljes, a távcső számára elérhető déli égboltot többször is lefényképezik. A megfigyelési program főbb céljai között – egyebek mellett – szerepel a Naprendszer kisebb égitestjeinek feltérképezése, különös tekintettel a Föld-közeli aszteroidákra (NEA) és Kuiper-övben található objektumokra (KBO), valamint a már említett Kilencedik bolygó utáni kutatás is. Az LSST felmérésnek köszönhetően várhatóan 10-szeresére, akár 100-szorosára is megnőhet az azonosított és katalogizált objektumok száma.

Jogosan tehetjük fel a kérdést: ha Napunknak tényleg volt egy kísérő csillaga, akkor hová lett? Miért nem élvezhetjük a kettős naplementét a Balaton partján? Loeb és Siraj azt feltételezik, hogy a keletkezési csillaghalmazban elhaladó egyéb csillagok gravitációs hatása szétszakította a Nap és kísérője közötti kapcsolatot és évmilliárdokkal ezelőtt kirepítette központi csillagunk párját a galaktikus térbe. A Nap rég elveszett társa mára már bárhol lehet a Tejútrendszerben.

Bolygós rövidhírek: felfedezték az Uránusz első röntgensugarait

Szerző: Rezes Dániel

A NASA („National Aeronautics and Space Administration”, Nemzeti Repülési és Űrhajózási Hivatal) Chandra űrtávcsőjét (CXO, „Chandra X-Ray Observatory”) használó csillagászok először detektálták az Uránuszról érkező röntgensugarakat. Ez a fontos felfedezés a jövőben a kutatók segítségére lehet a Naprendszer eme hatalmas gázbolygójának részletesebb megértésében.

A Föld és az Uránusz méretének összehasonlítása. Forrás: NASA

Naprendszerünk hetedik bolygója – melynek átmérője Földünk átmérőjének négyszerese – a többi bolygótól jelentősen eltérő tulajdonsággal rendelkezik. Ez a jellegzetesség a Nap körüli keringés síkjának és a bolygó forgástengelyének egymáshoz viszonyított szögében keresendő. Az Uránusz esetében ez a szög közel 90°, így a bolygó látszólag az oldalán fekve forog Nap körüli keringése során. Ezt a szokatlan sajátságot valószínűleg egy Föld-méretű égitesttel történt ősi ütközés során szerezte. A kis méretű kőzetmaggal rendelkező gázbolygót majdnem teljes egészében hidrogén és hélium építi fel, jellegzetes zöldeskék színét a légkörében található metántól nyeri el. Az Uránusz gyűrűrendszere két részre bontható és 27 ismert holddal is rendelkezik.

Sarki fények az Uránuszon. Forrás: ESA/Hubble; CC BY 4.0

Mivel az egyetlen, Uránusz mellett elhaladó űreszköz a Voyager-2 volt, ezért a csillagászoknak a Föld közelében található Chandra és Hubble űrtávcsövekre kell hagyatkozniuk a gázbolygó tanulmányozása során. Az új tanulmányban a kutatók a Chandra 2002-es és 2017-es megfigyeléseit használták fel. Az első megfigyelés kiértékelésénél tisztán észlelték a röntgensugarakat, míg utóbbinál egy valószínűsített röntgensugár flare (kitörés) is látható.
Felmerül azonban a kérdés, hogy mi okozza az Uránusz röntgensugár-kibocsátását? A csillagászok már korábban megfigyelték, hogy a Szaturnusz és a Jupiter is kibocsát röntgensugárzást, melynek okozójaként a Napot azonosították. A folyamat hasonlít ahhoz, amikor a földi légkör szórja a beérkező napsugárzást. Azonban ez a jelenség nem az egyedüli okozója az Uránusznál megfigyelt röntgensugárzásnak, a feltételezés szerint legalább még egy forrásból ered ilyen hullámhosszú sugárzás. Ennek a forrásnak a felderítésével a bolygó megértésére vonatkozó fontos következtetéseket lesznek képesek levonni a kutatók.

Közeli infravörösben készült hamisszínes fotó az Uránuszról. Forrás: NASA/Hubble

Az Uránusz röntgensugarainak további forrására ezidáig két lehetőség született. Az egyik szerint a Szaturnusz gyűrűihez hasonlóan az Uránusz gyűrűi is képesek röntgensugárzás kibocsátására. Ez a folyamat úgy zajlik, hogy a bolygó közvetlen űrbéli környezetében található töltött részecskék (pl. elektronok, protonok) ütköznek a gyűrű anyagával, melynek következménye a röntgensugárzás kibocsátása. Emellett egy másik lehetséges forrás az Uránusznál is tapasztalható aurora jelenség. Ez a folyamat hasonlít a Földön megfigyelt sarki fényhez, azonban fontos különbség, hogy bolygónkon más a kibocsátott sugárzás hullámhossz-tartománya. A földi sarki fény akkor keletkezik, amikor a világűrből érkező, nagy energiájú elektronok a Föld mágneses erővonalai mentén a sarkok felé gyűjtődnek és a légkörben lelassulnak. A jelenség a Jupiternél is hasonló, azonban az Uránusz esetében nem tisztázott egyértelműen.
Az Uránusz a többi naprendszerbeli bolygóhoz képest különleges feltételeket kínál a röntgensugárzás vizsgálatára szokatlan tengelyferdesége és mágneses mezője révén. Ezek a tulajdonságok rendhagyóan komplex és változatos aurora-jelenség létrejöttét tették lehetővé ezen a hatalmas gázbolygón. Az Uránusz röntgensugarainak és azok forrásainak vizsgálata a jövőben lehetőséget teremt az Univerzum megannyi különleges objektumának (pl. növekvő fekete lyukak, neutroncsillagok) megértésére. Ehhez pedig a csillagászok hűséges társa a Chandra űrtávcső.

Források:
[1] https://www.nasa.gov/mission_pages/chandra/images/first-x-rays-from-uranus-discovered.html
[2] Dunn, W. R., Ness, J. U., Lamy, L., Tremblay, G. R., Branduardi‐Raymont, G., Snios, B., Kraft, R. P., Yao, Z., & Wibisono, A. D. (2021). A Low Signal Detection of X‐Rays From Uranus. Journal of Geophysical Research: Space Physics, 126(4), e2020JA028739., 11 p.
[3] https://solarsystem.nasa.gov/planets/uranus/in-depth/

Bolygós rövidhírek: rádiójelek a Vénusz felső légköréből

Szerző: Gombai Norbert

Lassan 3 éve, hogy 2018. augusztus 12-én útjára indult a NASA „Parker Solar Probe” nevű nap-szondája a floridai Cape Canaveral egyik kilövőállásáról. A szonda célja a Nap felső légkörének minden eddiginél alaposabb vizsgálata. A tervek szerint a napfelszíntől 6,12 millió km-re (több, mint hétszer közelebb, mint bármilyen korábbi űreszköz), közel 1 400 C fokos hőségben önállóan dolgozó szerkezet különböző méréseket végez és megfigyeli majd azokat az energiaáramlási folyamatokat, melyek a napkorona magas hőmérsékletét okozhatják, valamint a napszelet befolyásolják.  Annak érdekében, hogy a szerkezet a megfelelő sebességre gyorsulva elég közel tudjon kerülni a központi csillagunkhoz a Parker Solar Probe hét alkalommal elrepül a Vénusz bolygó mellett, a gyorsításhoz kihasználva annak gravitációs erejét.

A Vénusz, ahogy a Parker Solar Probe látta 2020. júl. 11-én, 12 000 km távolságból. A csíkok a felvételen a bolygóközi térben repülő apró porszemcsék. Az égitest közepén lévő sötét folt az Aphrodite Terra, a Vénusz legnagyobb magasföldje.
Fotó: NASA/Johns Hopkins APL/Naval Research Laboratory/Guillermo Stenborg and Brendan Gallagher

A legutóbbi „hintamanőver” közben mintegy 833 km-rel a Vénusz felszín felett repülve a Parker FIELDS nevű – a Nap elektromos és mágneses mezőit vizsgáló – műszere 7 percen keresztül alacsony frekvenciájú, természetes eredetű – az emberi fülnek meglehetősen kísértetiesnek ható – rádiójeleket észlelt. Gly Collinson (NASA’s Goddard Space Flight Center) felismerte, hogy az észlelt jelek rendkívül hasonlóak a korábbi, a Jupitert és holdjait vizsgáló Galileo NASA misszióban gyűjtött eredményekkel, amikor a Galileo szonda keresztül repült a Jupiter-holdak külső légkörein.

A Földhöz hasonlóan a Vénusz is rendelkezik ionoszférával, egy elektromosan töltött vékony gázréteggel  a felső légkörében. Az ionoszféra rádióhullámokat bocsát ki, amelyeket arra alkalmas eszközzel – mint a Parker FIELDS műszere – érzékelni lehet. A NASA kutatói legutóbb 1992-ben végeztek méréseket a Vénusz felső atmoszférájában, köszönhetően a Pioneer Venus Orbiter szondának. Abban az időben a Nap ciklusa maximumának közelben volt. A következő években földi távcsöves megfigyelések bizonyították, hogy a Vénusz ionoszférája jelentősen elvékonyodott, ahogy a naptevékenység egy nyugodtabb szakaszba lépett.

A Parker Solar Probe legutóbbi bolygóközeli manővere a napminimum után hat hónappal történt. A szonda által érzékelt rádiósugárzás alapján a kutatók kiszámolták az ionoszféra sűrűségét. Az eredmények alátámasztják a feltételezést, hogy a napciklus közvetlen hatással van a bolygó felső légkörének állapotára.

Bolygós rövidhírek: hatalmas tömegű földönkívüli port gyűjt be Földünk évente

Szerző: Rezes Dániel

Bolygónk Nap körüli keringése alatt számtalan világűrben található porfelhőn halad keresztül. Ezeknek a felhőknek a légkörbe jutó, majd felszínre hulló anyaga minden évben több ezer tonnával növeli a Föld tömegét – írják francia, amerikai és angol kutatók új tanulmányukban.

A szerzők három terepi időszak (2001-2002, 2005-2006 és 2015-2016, december-február) során gyűjtött több, mint 2000 mikrometeoritot vizsgáltak meg következtetésük levonásához. A mikrometeoritok olyan kozmikus porszemcsék Föld felszínére érkezett anyagai, melyek túlélték a földi légkörben történt áthaladást, illetve méretük milliméter alatti tartományban mozog. A mikrometeoritok csoportokba rendezése igen komplex, leginkább összetételük és átolvadásuk mértéke szerint különíthetőek el egymástól az egyes típusok.

Az antarktiszi Concordia Kutatóállomás
(Wikipedia – Stephen Hudson)

A mintagyűjtés helye az antarktiszi Dome C helyszínen található francia-olasz CONCORDIA állomás volt. Itt a kutatók két méternél mélyebb kutatóárkokat ástak annak érdekében, hogy elérjék az 1995 előtt felgyülemlett havat. Ez az év azért fontos, mert ekkortól számítják az emberi jelenlétet a területen, ezáltal elkerülhetőek a gyűjtést befolyásoló mesterséges hatások. A több száz kilogrammnyi hó kibányászásához a szakemberek tiszta eszközöket használtak, melyeket előzetesen vízzel és etanollal tisztítottak meg. A kinyert havat megolvasztották, majd az apró szemcséket szűréssel távolították el a fagyos vízből. A mintagyűjtés helyszíne azért fontos ezeknek az apró részecskéknek a vizsgálatában, mert az Antarktiszon kiváló körülmények uralkodnak a mikrometeoritok konzerválására, elkerülhető a mállás, valamint az emberi és természeti hatások is.

Különböző típusú mikrometeoritok keresztmetszetének pásztázó elektronmikroszkópi képe
(Wikipedia – Shaw Street; CC BY-SA 3.0)

A kutatók 808 olyan gömböcskét (szferula) találtak, melyek részlegesen megolvadtak a légköri áthaladás során, valamint 1280 olyan mikrometeoritot is azonosítottak, melyek nem szenvedtek el olvadást. Ezeknek a részecskéknek az átmérője 30 és 350 µm között változik, össztömegük elenyésző, mindössze pár gramm. Azonban a vizsgálatok eredményeit bolygónk felszínének egészére kiterjesztve az látható, hogy ezeknek az apró anyagoknak a teljes mennyisége ~5200 tonnával növeli bolygónk tömegét évente. A légkörbe lépés előtti tömeg ennek a számnak csaknem háromszorosa, ~15000 tonna.

Szferulák fénymikroszkópos képe
(Wikipedia – Shaw Street)

A modellekből kiderül, hogy a mikrometeoritok legnagyobb része a rövidperiódusú, Jupiter-családba tartozó üstökösökből, míg kisebb része a Mars és a Jupiter pályája közötti kisbolygóövből származhat. Ezeknek az apró részecskéknek hatalmas szerepe lehetett a Föld korai történetében az által, hogy a számítások alapján 20-100 tonna tömegű szenet juttathatnak bolygónkra évente, mely fontos összetevője az élethez szükséges szerves vegyületeknek.

Források:
[1] https://www.sciencenews.org/article/earth-extraterrestrial-space-dust-weight-meteorite
[2] Rojas, J., Duprat, J., Engrand, C., Dartois, E., Delauche, L., Godard, M., Gounelle, M., Carillo-Sanchez, J. D., Pokorny, P., & Plane, J. M. C. (2021). The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth. Earth and Planetary Science Letters, 560, 116794., 11 p.

Bolygós rövidhírek: orosz-kínai kisbolygó- és üstökösmisszió

Szerző: Rezes Dániel

Kína bejelentette, hogy orosz műszerekkel is felszerelve indítja útjára következő űreszközét. A küldetés első célja a Kamo’oalewa nevű földközeli aszteroidán történő mintavételezés lesz. A begyűjtött anyagot az űreszköz először kapszulában visszajuttatja a Földre, majd a földi gravitációs mezőt kihasználva elindul második úticélja felé, mely a Mars és a Jupiter pályája közötti Kisbolygóövben keringő 133P/Elst–Pizarro üstökös lesz. Utóbbi utazás hét évet fog felölelni.

A Kínai Nemzeti Űrügynökség (CNSA, „China National Space Administration”) által 2019-ben kiírt pályázatot az Orosz Tudományos Akadémia Űrkutatási Intézete nyerte, így az általuk gyártott eszközökkel csatlakozhatnak a ZhengHe névre keresztelt többcélú küldetéshez. Az űreszköz nevét egy kora 15. századbeli híres kínai tengeri felfedezőről kapta. A ZhengHe a feladataihoz szükséges műszerek széles palettáját fogja szállítani. Ilyen eszközök a hagyományos és multispektrális kamerák, spektrométerek, radar, magnetométer és különböző részecskedetektorok.

A Kamoʻoalewa pályája a belső Naprendszerben.
Forrás: Wikipedia (Tomruen); CC BY-SA 4.0

Az első objektum, a Kamoʻoalewa vagy más néven 2016 HO3 kisbolygó – melynek hawaii neve oszcilláló mozgást végző égitestre utal – kevesebb, mint 100 méter hosszúságú és csak 2016-ban fedezték fel. Jelenleg ez a legkisebb, legközelebbi és legstabilabb olyan „kvázi-holdja” a Földnek, mely folyamatosan kering bolygónk körül, azonban túl távol található, hogy hagyományosan holdnak nevezhessük, ugyanis maximális távolsága 100-szoros holdtávolság.

A második objektum, az 1996-ban Eric Walter Elst és Guido Pizarro által felfedezett 133P/Elst–Pizarro üstökös, melyet szokatlan kisbolygóövi helyzete miatt gyakran aszteroidaként is besoroltak. Ezzel ellentétben üstökösként porból és gázból álló csóvája is megfigyelhető. Ez a kettős természet jellemzi a nemrég felfedezett kisbolygóövi üstökösöket (MBCs, „Main Belt Comets”), melybe a 133P/Elst–Pizarro is tartozik.

A 133P/Elst–Pizarro az ESO 1 méter átmérőjű Schmidt-teleszkópjával.
Forrás: ESO; Wikipedia; CC BY 4.0

A kooperációban végrehajtott küldetés célja, hogy információt szolgáltasson a naprendszerbeli kis égitestek képződésére és fejlődésére, a „kvázi-holdak” eredetére és mozgásukra, valamint az MBC-k tulajdonságaira, különös tekintettel a vízre és más illók jelenlétére vonatkozóan. Oroszország és Kína ezzel a 2024-re tervezett küldetéssel bővíti a hosszú ideje fennálló kölcsönös űrrepülési együttműködését.

Források:
[1] https://www.space.com/russia-joins-china-asteroid-comet-mission?fbclid=IwAR17cV6CMuN4gO9zlVA8typkmJQY4Lu_ELn0fF0lT3UnobFN6qyQ8f6HFcs
[2] https://www.nature.com/articles/d41586-019-01390-5
[3] https://en.wikipedia.org/wiki/469219_Kamo%CA%BBoalewa
[4] https://www.hou.usra.edu/meetings/lpsc2019/pdf/1045.pdf
[5] https://en.wikipedia.org/wiki/7968_Elst%E2%80%93Pizarro

Bolygós rövidhírek: érkeznek a Lyridák

Szerző: Balázs Gábor

A leglátványosabb meteorrajok kétségkívül a Perseidák és a Geminidák, amit leginkább az óránként hulló meteorok magas száma okoz. Noha az előbbiek idején sűrűn potyognak a hullócsillagok, van rajtuk kívül is megannyi meteorraj, amik szintén figyelmet érdemelnek.

Ide sorolható az április 22-én, csütörtökön érkező, ebben az évben az első számottevő meteorraj, a Lyridák. Nevüket az ún. radiáns magyarázza. Ez az a pont, melyből a meteorok érkezni látszanak. Ennek elhelyezkedése adja meg a rajok nevét. Esetünkben a Lant (Lyra) csillagkép terültén található ez a pont, innen ered a Lyridák megnevezés.

A Lyridák radiánsa. Forrás: Stellarium

Ugyebár szinte minden meteorraj egy üstököshöz kötődik, így nincs másképp itt sem. Ennek a rajnak a szülőüstököse a (C/1861 G1) Thatcher üstökös. A kométa utoljára 1861-ben közelítette meg Napunkat, és 415 éves keringési periódusával számolva legközelebb 2276-ban fog visszatérni. Ekkor szép meteoresőt okozhat. A Lyridák egyébként a legrégebben feljegyzett meteorraj. Kr. e. 687-ben már Kínában írtak róluk.

Áttérve megfigyelésükre, aktivitásukra április 16. és 25. között lehet számítani, de a raj maximuma lehet mindenki számára érdekesebb. A jeles időpont 22-én hajnalban lesz, amikor óránként 7-8 darab meteort is láthatunk, de az ezt követő egy-két napban is érdemes próbálkozni megpillantásukkal. Ha szerencsénk van, akár még egy-egy tűzgömb is feltűnhet.

Egy fényes, -7 magnitúdós tűzgömb a szerző felvételén

2021-ben derült idő esetén sem lesznek a legkedvezőbbek a körülmények, ugyanis égi kísérőnk a maga 67%-os fázisával fogja beragyogni az éjszakai égboltot. Ennek okán a megfigyelhető tagok reális száma az óránkénti 5 körül alakulhat. Aki pedig kimerészkedik néhány meteort megcsodálni, az izzó kozmikus porszemcséken kívül még a Tejút egyre magasabbra emelkedő csillagösvényét, majd a Szaturnusz és a Jupiter párosát is megfigyelheti.


Forrás: NASA

Vulkánok és a global dimming

Szerző: Kovács Gergő

2021. április 9-én kitört a Karibi-térséghez, azon belül a Szél felőli szigetekhez tartozó Saint Vincent sziget La Soufrière nevű vulkánja, mely kitörés a XXI. század egyik legnagyobb vulkáni erupcióját okozta.

A La Soufriére kitörése. Forrás: RCI Martinique – YouTube CC BY 3.0

A kitörés jelentős mennyiségű vulkáni port juttatott a légkörbe, az ún. vulkánkitörési index (VEI) szerint a robbanásos kitörés VEI 4-es erősségű, mely még ha nem jelentős, de mindenképpen kimutatható mennyiségű, 0,4-0,6 Tg (teragram=1012 gramm) mennyiségű kén-dioxidot juttatott a légkörbe. Ha a kitörés VEI 5-ös vagy annál erősebb lenne, már elegendő mennyiségű aeroszolt juttatna a sztratoszférába ahhoz, hogy komolyabb mértékben befolyásolni tudja a Föld klímáját.

A VEI-index egyes fokozatainak megfelelő kitörések.
A La Soufriére-ből a légkörbe jutott vulkáni anyag. (NASA)

A kitörés óta körülbelül 20 ezer embert kellett evakuálni a szigetről. Az utcákat, házakat vastag por fedi, a vízellátás és az elektromos áram-ellátás akadozik. A nagy mennyiségű vulkanikus por és gáz mellett a tűzhányóból kiszabaduló rendkívül forró törmelékzuhatag, ún. piroklaszt-ár is óriási pusztítást okozott. A védekezés sikerét jól jelzi azonban, hogy eddig senki nem vesztette életét a szigeten.

A “global dimming” (mely fogalom magyar fordítására nem vállalkozom) a légkörbe jutó aeroszolrészecskék (vulkáni por, kén-dioxid, füst, korom, kondenzcsíkok stb.) napsugárzás-blokkoló hatása, melynek következtében a felszíni hőmérséklet kimutatható mértékben csökken, függően a légkörbe jutó részecskék mennyiségétől, illetve attól, hogy a troposzférába vagy feljebb, a sztratoszférába kerülnek, illetve, hogy az Egyenlítő környékéről terjednek szét a légkörben (ekkor hatékonyabb a terjedésük) vagy nem.

Ez a felszínre érkező napsugárzás mennyisége mellett képes módosítani az esőzések térbeli eloszlását, árvizeket vagy szárazságokat (így éhínségeket is) okozva. A történelem során számos esetben volt példa a global dimming jelentős klímaformáló hatására.

1815-ben a Tambora VEI 7-es erősségű kitörése a rákövetkező évre elhozta “a nyár nélküli év“-et: júniusban Európa és Észak-Amerika szerte havazott, jelentős terménypusztulást és éhínséget okozva. A sors iróniája, hogy ebben az évben, ezen időjárási anomáia hatására írta Mary Shelley a Frankensteint.

Ki gondolta volna elsőre, hogy összefüggés van kettejük között? (Wikipedia nyomán)

A 2001. szeptember 11-ei terrorcselekmény után több napra is a földre parancsolták az USA összes polgári repülőgépét, a meteorológusok példátlan hőmérséklet-növekedést figyeltek meg az országban, melyet a kutatók a kondenzcsíkoknak, illetve azok hiányának tudtak be. Egy friss kutatás szerint hazánkban az éves napenergia-termelésben körülbelül 1-1,3%-nyi csökkenést okoznak a kondenzcsíkok.

Kondenzcsíkok DNy-USA fölött. (MODIS)

Láthatjuk hát, hogy ezen jelenségnek igen komoly klíma- és történelemformáló hatásai is lehetnek. Nem véletlen, hogy a global dimming az egyik potenciális jelöltje az éghajlat lehetséges mesterséges szabályozásának, a geoengineeringnek, ezen belül is az ún. napsugárzás-menedzsmentnek, mely célja a földfelszínre érkező napsugárzás csökkentése, többek között különféle aeroszolok használatával (por, kén-dioxid, titán-dioxid).


Források:
[1] [2] [3] [4]

A 2021-es év holdkutatása

Szerző: Balogh Gábor

Az ötvenes-hatvanas évek űrhajózását, az űrszondás próbálkozásokat a két nagyhatalom, az Egyesült Államok és a Szovjetunió között zajló űrverseny határozta meg. A Hold kutatása szintén főleg politikai célú volt. A szovjet Luna program és az amerikai Pioneer program célja is az volt, hogy megelőzzék egymást. A kezdeti szovjet sikereket az 1969-as emberes amerikai holdraszállás törte meg, ezzel gyakorlatilag meg is szűnt a szovjet-amerikai űrverseny a Holdért.

Napjainkra az űr meghódításáért folyó verseny teljesen más arculatot öltött. Sok új szereplő jelentkezett, a technológia fejlődésével már nem kellettek a szuperhatalmak hatalmas pénzforrásai, számos kisebb ország, sőt, vállalkozás is belépett a versenybe.

A 2021-es év izgalmasnak ígérkezik a Hold kutatásában is.

A CAPSTONE („Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment”, Föld-Hold közti tér Autonóm Helymeghatározó Rendszer Technológiai Műveleti és Navigációs Kísérlet) program (2). A Gateway, a NASA Artemis programjának előfutáraként segít csökkenteni a jövőbeni űrhajók kockázatait különféle navigációs technológiai megoldásokkal. A mindössze 25 kg tömegű CubeSat (3) lesz az első űreszköz, amely a CAPSTONE részeként különleges holdpályákat tesztel. Ezek a pályák (Cislunar Near Rectilinear Halo Orbits) rendkívül hatékonyak és gazdaságosak a Holdra való eljutásban. Másik fontos dolog, hogy tesztel olyan űreszközök közötti kommunikációs rendszereket is, melyek lehetővé teszik a Holdhoz viszonyított helyzetük meghatározását, anélkül, hogy a földi követőrendszerekre hagyatkoznának. A 2021-es tervezett kilövés helye a Virginiai Rocket Lab Launch Complex 2.

A CAPSTONE. Forrás: NASA

Spacebit Mission One. A Spacebit Mission One az Egyesült Királyság első tervezett Hold-missziója. A rovert a magántulajdonban lévő Spacebit cég tervezi, az ukrán Yuzhmash-sal együttműködve. Fő célja a japán Asagumo holdjárónak a Hold felszínére juttatása és a holdbéli lávacsatornák kutatása. Az Astrobotic első Holdra leszálló küldetésnek, a Mission One-nak a tervei szerint 14 kereskedelmi hasznos terhe lesz. Ezek közé tartozik a Hakuto és a Team AngelicvM kis roverjei, a Carnegie Mellon Egyetem egy nagyobb, Andy nevű roverje, valamint egy különleges, 1,3 kg-os miniatűr rover, az Asagumo is, amely négy lábon jár. Az Asagumo legalább 10 méter távolságot tervez megtenni a Hold feszínén. A Spacebit Mission One indulását 2021 júliusában tervezik (4), a holdi Lacus Mortis lávamezőn (5) fog leszállni. A holdbéli lávaalagutak kiemelt fontosságúak a holdkutatás szempontjából, hiszen az első, a Holdon folyamatosan megtelepedő kutatók ilyen lávaalagutakban kialakított szállásokon fognak élni, a felszíni sugárzást elkerülendő (6,7)

Az Asagumo robot. Forrás: Serhii Harbaruk – Wikipedia CC BY-SA 4.0

Nova-C leszállóegység. A Nova-C egy leszállóegység, melyet az Intuitive Machines magáncég tervezett arra, hogy kereskedelmi hasznos terheket szállítson a Hold felszínére (8). Az Intuitive Machines egyike volt a NASA által 2018 novemberében kiválasztott kilenc vállalkozónak, a Nova-C pedig az első három leszállóegység közé tartozik, amelyeket az új NASA program, a Commercial Lunar Payload Services (CLPS) néven indított el. Az indítást egy Falcon 9 rakétával tervezik 2021. október 11-én. A Nova-C kiemelten fontos feladata a Hold természeti kincseinek feldolgozásához szükséges technológiák kutatása és tesztelése. A leszállóhely  az Oceanus Procellarum, a Viharok Óceánján található Vallis Schrasöteri, a vulkanikus eredetű Schröter-völgy lesz (9). Ennek a leszállóhelynek a fontosságát az is mutatja, hogy annak idején az Apollo 18 egyik lehetséges leszállóhelyének lett kiválasztva, mielőtt a küldetést törölték.

A Nova-C. Forrás: Wikipedia – NASA Goddard Space Flight Center, Greenbelt, MD, USA;
CC BY 2.0

A Luna 25 (Luna-Glob leszállóegység) az orosz Roscosmos holdi küldetése (10). A hold déli pólusa közelében levő Boguslavsky-kráternél száll majd le. A Luna-Glob landerről Luna 25-re nevezték át, hogy hangsúlyozzák a szovjet Luna-program folytonosságát az 1970-es évektől, bár a Luna-Glob holdkutatási program része. A program feladata víz, illékony anyagok és szerves vegyületek kutatása a holdi talajban. Az indítást 2021 októberére tervezik, egy Soyuz-2.1b/Fregat-M rakéta segítségével.

A Luna-25 makettje. Forrás: Pline – Wikipedia; CC BY-SA 4.0

Az Artemis 1 a NASA Artemis programjának első, nem emberes próbarepülése, amely az Orion MPCV és Space Launch System rakétájának első integrált repülése (11). Várhatóan 2021 novemberében indul. Az Orion űrhajó 25,5 napos küldetéséből hatot Hold körüli retrográd pályán fog tölteni. A misszió az Orion űrhajó és a Space Launch System rakétáját a legénység által végzett későbbi repülések számára teszteli (12,13). Ha a Hold felé vezető manőver sikeres lesz, az Orion elválik az utolsó lépcsőtől, az ICPS rakétától és a Hold felé indul. Az ICPS pedig 13 CubeSat-ot telepít, amelyek tudományos kutatásokat végeznek. Maga az Artemis program (14,15) egy amerikai kormány által finanszírozott nemzetközi emberes űrrepülési program, amelynek célja embert juttatni a Holdra. 2020. december 9-én Pence alelnök jelentette be a 18 űrhajósból álló csapatot, becenevén “Teknősöket”, ahova két kanadai űrhajós is tartozik.

(Az Artemis-programmal kapcsolatban továbbá kiderült, melyik cég fogja kifejleszteni és megépíteni az új holdi leszállóegységet, mely vállalat nem más, mint a SpaceX, a hírről bővebben itt olvashatunk. – a szerk.)

Az Artemis-1 (illusztráció). Forrás: Wikipedia

ALINA („Autonomous Landing and Navigation Module”, Autonóm leszállási és navigációs modul). A Planetary Transportation Systems GmbH (PTS), berlini székhelyű, német vállalat (16). Ők voltak az első német csapat, amely 2009. június 24-én hivatalosan is bejutott a Google Lunar X-Prize versenyre, de kilövési szerződés hiányában nem sikerült 2017-ben bejutnia a döntőbe. Az ALINA-t eredetileg egy SpaceX Falcon-9 v1.2 segítségével indították volna el 2020-ban, de 2021-ben átcsoportosították egy erre kijelölt Falcon-9 v1.2-re, mivel a tömege körülbelül 4000 kg-ra nőtt. Később úgy döntöttek, hogy az ALINA egy Ariane64-et vehetne igénybe.

A Lunar Xprize versenyre is kijutott ALINA
és a Mondrover nevű holdjáró (Part Time Scientists).
Forrás: Wikipedia; CC BY-SA 4.0

Küldetésnek célja, hogy 3–5 km-re az Apollo 17 leszállóhelyétől, a Taurus-Littrow völgyben szálljon le, és hogy az Apollo 17 űrhajósai által ott hagyott holdjárót felkeresse (18). A PTScientists ígéretet tett arra, hogy Holdon leszállt amerikai és a szovjet űreszközöket “világörökségként” megőrzi. Az ALINA jövője pillanatnyilag kérdéses. A PTScientists 2019 júliusában fizetésképtelenségi bejelentést tettek, majd 2019 augusztusában egy meg nem nevezett vállalat felvásárolta azt, így folytathatja működését, de 2021-es kilövése bizonytalan (17).



Források:

  1. 8 moon missions are going to the Moon, https://indianspacenews.blogspot.com/2021/03/8-moon-mission-are-going-to-moon-in-2021.html?fbclid=IwAR3dDtZJxQHshdZmTDpOU3BGuLtPISvPt7LEssL-BDis69NiMIH-zwaRbso
  2. What is CAPSTONE? https://www.nasa.gov/directorates/spacetech/small_spacecraft/capstone
  3. Clark, Stephen “NASA picks Rocket Lab to launch lunar CubeSat mission”. Spaceflight Now, https://spaceflightnow.com/2020/02/15/nasa-picks-rocket-lab-to-launch-lunar-cubesat-mission/
  4. UK’s 1st Moon Rover to Launch in 2021, https://www.space.com/uk-first-moon-rover-spacebit-launch-2021.html
  5. 3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure.” Journal of Astronomy and Space Science 32(2); Pages: 113-120, http://koreascience.or.kr/article/JAKO201518564558885.page
  6. Arya, A. S.; et al. (February 25, 2011), “Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data”, Current Science, 100
  7. Living Underground on the Moon: How Lava Tubes Could Aid Lunar Colonization, https://www.space.com/moon-colonists-lunar-lava-tubes.html
  8. Nova-C, https://www.intuitivemachines.com/lunarlander
  9. Kanayama, Lee (13 April 2020). “NOVA-C selects landing site, Masten gains CLPS contracts”, https://www.nasaspaceflight.com/2020/04/nova-c-landing-site-masten-clps-contracts/
  10. The Luna-Glob lander, http://www.russianspaceweb.com/luna_glob_lander.html
  11. NASA administrator on new Moon plan: We’re doing this in a way that’s never been done before, https://www.theverge.com/2019/5/17/18627839/nasa-administrator-jim-bridenstine-artemis-moon-program-budget-amendment
  12. NASA will likely add a rendezvous test to the first piloted Orion space mission, https://spaceflightnow.com/2020/05/18/nasa-will-likely-add-a-rendezvous-test-to-the-first-piloted-orion-space-mission/
  13. Hopeful for launch next year, NASA aims to resume SLS operations within weeks, https://spaceflightnow.com/2020/05/01/hopeful-for-launch-next-year-nasa-aims-to-resume-sls-operations-within-weeks/
  14. Artemis I, https://www.nasa.gov/artemis-1
  15. Artemis I, https://www.nasa.gov/specials/artemis/
  16. Meet ALINA – the Autonomous Landing and Navigation Module, https://www.pts.space/products/alina/

Csillagászat a szobánkból – a Világegyetem mérettitkai

Szerző: Szoboszlai Endre

A Magnitúdó Csillagászati Egyesület 2021. április 15-én, csütörtökön este 19 órától, izgalmas témát ajánl azoknak, akik érdeklődnek a világegyetem titkai iránt és technikailag be tudnak lépni a Skype segítségével megvalósuló virtuális programba. Az 1972 tavasza óta működő debreceni csillagászati csapat gyorsan reagált az elmúlt év tavaszán betört koronavírus-járvány miatti élethelyzetre…

A koronavírus-járvány ránk kényszerített gyötrelmei miatt nem lehetett közösségi foglalkozásokat, nyilvános távcsöves bemutatásokat tartani. De ennek lett egy érdekes hozadéka: már otthonról, a szobánkból is hódolhatunk a csillagászat szép tudományának! Ugyanis azóta szinte minden csütörtökön este, az internet segítségével, virtuálisan „találkozunk” és vetítéssel színesített előadásokat tartunk, vagy akár kis magán obszervatóriumból távcsöves csillagászati látványt is bemutathatunk. A programjaink sikeresnek bizonyultak, hiszen ma már nem csak debreceniek lépnek be a virtuális programunkba, hanem az ország több városából is, sőt Romániából és Németországból is vettek részt kollégáink ezeken a zártkörű előadásokon.

A MACSED a kabai meteorit hullásának helyszínén. Fotó: Zajácz György

Az érdeklődés miatt 2021. április 15-én, csütörtökön este 19 órától egy nyilvános előadást szervezünk! Ez nagyobb volumenű előadás lesz a Skype-program segítségével. A vetítéssel színesített előadás visszatekintést nyújt annak az izgalmas témának a tudománytörténeti fejlődéséről, melyben megismerhette az emberiség a világegyetem méretéről, a spirálgalaxisok és a csillagközi ködök távolságáról alkotott elméletek fejlődését. A témát neves előadó, Prof. Dr. Horváth István, csillagász, fizikus, a Nemzeti Közszolgálati Egyetem tanszékvezető egyetemi tanára, mutatja majd be, „Érdekességek a Shapley-Curtis vitáról” címmel.

Dr. Horváth István pályafutását Debrecenben kezdte és már nagyon fiatalon lelkes tagja volt az egykori csillagászati szakkörünknek.

A Skype-rendszer terhelhetősége korlátozott, körülbelül maximum száz fős. Ezért akik nem tagjai a csillagászati egyesületünknek, de szeretnék meghallgatni az előadást, kérjük legkésőbb 2021. április 14-én, 18 óráig írjanak egy elektronikus levelet a magnitudo.szoboszlai@citromail.hu e-mail címünkre. A leghamarabb jelentkező hatvan külsős érdeklődőnek megküldjük a belépéshez szükséges elérhetőséget. (A fennmaradó létszámterhelést tagjaink vehetik igénybe, akiknek nem kell jelentkezniük.) A beléptetést kérő külsős érdeklődőknek legkésőbb 15-én, 15 óráig megküldjük a Skype bejelentkezési elérhetőségét.

(Az egyesület honlapja: http://macsed.csillagpark.hu/.)