Bolygóvonat a hajnali égen, nézzük mi várható valójában

Szerző: Balázs Gábor

Bolygók sorakoznak a hajnali égen, egymás után rendre, szépen. De mi is fog történni a következő hajnalokon? Fontos leszögezni, nem az, amit oly sok helyen olvastunk az eseményről. Ennek a bolygósorakozónak tudományos jelentősége nincs, pusztán egy szép égi látványosság, sőt, hogy több bolygó látszik, máskor is megtörténik. Volt hasonló decemberben az esti égen, 2020 tavaszán és még előtte 2016-ban is. Ebből következik, hogy maga a bolygósorakozó nem egy ritka jelenség.

Bolygósor az esti égen 2020 decemberében

De akkor miért érdekes, ha nem ritka? Lényegében azért, mert a bolygók keletről nyugat felé haladva (balról jobbra) a Naptól való távolságuk sorrendjében láthatóak. De ez sem évezredenként egyszer. 2004 decemberében voltak a bolygók legutóbb hasonló sorrendben. A különbség most csupán annyi, hogy a bolygók közelebb látszódnak egymáshoz.

A bolygók állása 2004 decemberében (Forrás: Stellarium)

És nem kell évszázadokat várni a következőre sem. A sorrend 2040-ben ismét a Naptól való távolság szerint fog alakulni. Hogy minden bolygót láthatunk egy időben az égen, az egy másik kérdés. Ez utoljára 2020-ban történt meg és legközelebb 2161-ben lesz megfigyelhető.

Tehát miért különleges a mostani? Mert az előző kettő egy időben történik. Ugyanabban az időben minden bolygót megfigyelhetünk, ezek közül négyet szabad szemmel is láthatunk. Mindezt a bolygók Naptól való távolsága szerinti egymásutánban. Ez az egybeesés az, ami ténylegesen különlegessé teszi az elkövetkező hajnalokon látható bolygósort. Magát a sorrendet csupán az Uránusz és a Neptunusz töri meg, de ezeket a látvány tetőpontján már szabad szemmel most nem láthatjuk.

Hogyan látszik most és mikor lesz a legszebb?

Maguk a bolygók fényes csillagokként tűnnek fel a hajnali égen kelet, délkelet felé, mikor már pirkad. Először május végén, La Palmán fotóztam a már hasonló formációban álló bolygókat.

A június végén látható bolygósor május 25-én La Palma szigetéről. A délebbi részeken az együttállás látványosabb lesz a horizonttól való magasság miatt (nagyobb méretben itt)

Legutóbb június 13-án hajnalban készült kép már úgy a bolygósorról, ahogyan látszódni fog néhány nap múlva. Persze addig a bolygók elhelyezkedése picit változik.

A júniusi felállás 13-án hajnalban a szerző felvételén (nagyobb méretben itt)

Ahogy több helyen is írták, június 17. és 28. között lesz a legszebb a bolygóvonat látványa. De miért pont akkor? A bolygósorhoz június második felében csatlakozik a Merkúr, illetve ezekben a napokban az egyre csökkenő fázisú Hold szép együttállásokkal kápráztatja el a koránkelőket. Maga a bolygósor még július legelején is látható lesz, igaz, már a Merkúr és a Hold nélkül.

Vegyünk egy, a két szélső időpont közötti dátumot. Legyen június 22. Elsőként a Szaturnusz kerül a horizont felé 0:05 után. Mivel a ténylegesen látható bolygókról lesz most szó, így a soron következő a fényes Jupiter 1:27-től. Őt nemsokkal égi kísérőnk, a Hold fogja követni. 2 óra után már látható a földközelségéhez közeledő vöröses csillag, a Mars. Utóbbi három 25-én szép hármas együttállásban lesznek megfigyelhetők.

Mars-Hold-Jupiter hármas együttállás június 22-én. Ezt az együttállást érdemes már 3 óra környékén megkeresni (Forrás: Stellarium)
A Mars, a Hold és a Jupiter együttállása május 25-én a szerző felvételén La Palma szigetéről. Hasonló látványra számíthatunk 22-én is, mindössze a Mars és a Jupiter lesz kissé távolabb egymástól (nagyobb méretben itt)

2:54-től már elméletben látható az Uránusz is. Ez a bolygó vidéki égbolton szabad szemmel halvány csillagként, de látható, de jelen esetben a szürkületi égbolt fénye miatt mi már nem láthatjuk. A látható bolygókhoz utoljára a Vénusz fog csatlakozni 3:38-tól. Őt a Merkúr követi, de fontos leszögezni, hogy nagyon alacsonyan lesz a horizont felett, így több mint valószínű, hogy ez a bolygó már elveszik a felkelő Nap fényében.

Forrás: Stellarium
A Naprendszer június 22-én. A nyíl mutatja, merre nézünk hajnalban. Forrás: https://www.theplanetstoday.com/

De mi szükséges a megfigyeléshez? Elsősorban fontos szem előtt tartanunk, hogy nem lesz szabad szemmel látható a Naprendszer összes bolygója. Második legfontosabb, szinte tökéletesen tiszta keleti, délkeleti horizontra lesz szükség ahhoz, hogy a legjobb időpontban láthassuk az összes látható bolygót.

Ahogy a fenti időpontokból is látszik, a teljes sor megfigyelésére igen rövid idő áll majd rendelkezésre. A Vénusz 3/4 4 felé lesz olyan magasan, hogy már jól látható legyen, de 4 óra után már a felkelő Nap fénye már folyamatosan elvesz a látványból az idő előrehaladtával. Ekkor már csak a négy, fényesebb bolygó (Vénusz, Mars, Jupiter, Szaturnusz) fog látszódni. Távcsővel ezt a jelenséget nem érdemes megfigyelni, hiszen maguk a bolygók 105 fokos látószögben sorakoznak. Ez a jelenség tényleg a csak szabad szemes alkalmak egyike. Ellenben aki a bolygókat távcsővel szeretné megnézni, azok ténylegesen láthatják a legtöbb bolygót. Akár még a Merkúrt is.

És ha le szeretném fotózni?

Első és legfontosabb: egy stabil állvány. Enélkül igen nehéz lesz a jelenség megörökítése. A bolygók az égbolton szétszórva lesznek, így a lehető legkisebb gyújtótávolságú objektívünket vegyük elő. Így sem biztos, hogy egy képen látszódni fog az összes bolygó, ezért nagy valószínűséggel panorámafotót kell készítenünk. A fentebb látható, június 13-án készült fotó is egy 3 képes panorámafotó.

Ha már objektív. A csillagokat pontszerűnek látjuk és törekedünk arra, hogy a képeken is annak lássuk őket. Hogy ne hosszú csíkok legyenek a csillagok és persze a fő attrakciók, a bolygók, be kell tartanunk az 500-as szabályt. Röviden elmagyarázva: 500-at elosztjuk az általunk használt objektív gyújtótávolságával így megkapjuk azt a leghosszabb záridőt másodpercben, aminek használatával még pontszerűek maradnak a csillagok. Ha viszont NEM full frame fényképezőgépet használunk, ezt az értéket tovább kell osztani 1,6-al. A számítás szemléltetéséhez a Canon 2000D-t és egy alap 18-55-ös objektívet veszek alapul. A legkisebb gyújtótávolsága 18 mm. 500/18 eredménye 27,8. Mivel crop szenzoros gépről van szó, ezért tovább kell osztani 1,6-al. 27,8/1,6 eredménye 17,4 így a leghosszabb használható záridő 17 másodperc.

Full frame gép esetében: 500/fobj

Crop szenzoros gép esetében: (500/fobj)/1,6

Akik pedig az együttállások között szeretnének válogatni, azoknak összeszedtem a Hold együttállásait 18-a és 27-e között. (A képek az adott dátum égboltjának 3:55 perckori állapotát mutatják.)

Először a Hold a Szaturnusz közelíti meg 18-án.

A bolygósor 18-án hajnalban. Forrás: Stellarium

Majd 21-e és 23-a között a Jupiter és a Mars közelében láthatjuk égi kísérőnket.

A bolygósor 21-én hajnalban. Ekkor a Hold a Jupitert látogatja meg. Forrás: Stellarium
A bolygósor 22-én hajnalban. Forrás: Stellarium
A bolygósor 23-án hajnalban. A Mars bolygó mellett láthatjuk az egyre fogyó Holdat. Forrás: Stellarium

Bónusz: 26-án hajnalban a vékony hajnali holdsarló a Vénusz és a Fiastyúk nyílthalmaz között fog elhaladni. Ennek sikeres megfigyelése, netán megörökítése igazán maradandó élmény.

Hold-Vénusz-Fiastyúk együttállás 26-án. Forrás: Stellarium
A bolygósor 26-án hajnalban. Forrás: Stellarium

És egy igazi kihívás:

A bolygósor 27-én hajnalban. Forrás: Stellarium

Ritka meteoritdarabka a Luna-16 által gyűjtött holdtalajban

Szerző: Rezes Dániel

A nem holdi eredetű kőzettörmelékek nagyon ritkák a különböző mintagyűjtések által a Földre szállított holdtalaj mintákban, azonban egy, a Nature Astronomy nevű szaklapban megjelent friss tanulmányban orosz, svéd, ausztrál és osztrák kutatók egy csoportja azt publikálta, hogy felfedeztek és részletesen megvizsgáltak egy ilyen szemcsét a szovjet Luna-16 küldetés által hozott talajmintában. A felfedezés fontos, mivel ezidáig csak két ilyen extralunáris (nem holdi eredetű) szemcsét azonosítottak a tudósok az Apollo és Luna küldetések által hozott több, mint 380 kg kőzetmintában. Ezek közül az egyik egy szenes kondrit meteorit darabja volt, melyet a Bench-kráternél találtak, míg a másik egy ensztatit kondrit töredéke volt a Hadley Rille nevű képződmény területéről.

Buzz Aldrin űrhajós bakancsának nyoma a holdi talajban (NASA)

A holdi regolit a Hold felszínének gyakorlatilag teljes egészét fedő képződmény, mely a Holdat érő folyamatos mikro- és makroméretű meteoritok (impaktorok) becsapódásától, valamint a Napból és más csillagokból érkező töltött részecskék bombázásától keletkező, felaprózódott kőzettörmelékből (klasztok) álló konszolidálatlan lepel. A benne található kőzettörmelék szemcsék döntő többsége kevesebb, mint 1 cm méretű. A regolit a sötét bazaltsíkságokon, vagyis mare (tenger) területeken pár méter vastagságú, míg az idősebb felföldi területeken ennek akár többszöröse is lehet vertikális kiterjedése. A regolit finomszemcsés (<1 mm) frakcióját nevezzük holdtalajnak. Elsőre azt feltételezhetnénk, hogy a Holdat ért becsapódások száma miatt a regolit és annak részeként a talaj gazdag az impaktorok anyagában, azonban felismerhető és tanulmányozható szemcsét találni benne igen nehéz.

A Luna 16 által gyűjtött holdtalajban talált, ~200 µm átmérőjű, #443 jelű szemcse. A szemcsét félig sajátalakú olivin (Ol) és alacsony Ca-tartalmú piroxén (Px), valamint sokkolt plagioklász (Pl) alkotja. Ezek mellett megfigyelhetőek még az erekben és zsebekben megjelenő Fe-Ni fémszemcsék (Fe-Ni) és a troilit (Tr), valamint kis mennyiségben kromit (Chr) és merrillit (Mer) is (Demidova et al. 2022).

A vizsgált anyagot szolgáltató Luna-16 küldetés a Szovjetunió első olyan sikeres vállalkozása volt, melyben a fő cél a Holdon történő mintavétel és a kőzetanyag hazaszállítása volt. A mintagyűjtés során több, mint 100 grammnyi holdi talajt sikerült a Földre juttatni. Az 1970-ben kivitelezett küldetés fontos mérföldkő volt a holdkutatásban, mivel ez volt a Hold első, teljesen automatizált megmintázása is.

A közönséges kondritok LL csoportjába tartozó kőmeteorit
(Meteorite Recon/Wikipedia; CC BY 3.0)

A tanulmány középpontjában álló, ~200 µm átmérőjű, #443 jelű törmelékdarabot a Luna-16 a Mare Fecunditatis (Termékenység Tengere) északi területén gyűjtötte. A benne található színes elegyrészek (olivin és piroxén) ásványkémiai tulajdonságai a holdi mintákétól eltérő összetételt jeleznek, ugyanakkor nagyon hasonlítanak az LL kondritcsoportba tartozó közönséges kondritok tulajdonságaihoz, valamint a japán Hayabusa küldetés által megmintázott Itokawa kisbolygó anyagához is. A különböző izotópos (oxigén és kén) vizsgálatok is alátámasztják a szemcsének az imént említett anyagokhoz való hasonlóságát. Ezen felül a szemcsére számolt radiometrikus koradatok is azt tükrözik, hogy a képződmény, melyből a töredék származik, a Naprendszer legidősebb kőzetanyagai közé tartozik, kora ~4548 millió év. Emellett a szemcse nem szenvedett el jelentős felfűtést kialakulása óta (<400°C). A fentebb leírt tulajdonságok mind arra a következtetésre juttatták a kutatókat, hogy a #433 jelű szemcse valóban extralunáris forrású, mégpedig egy LL típusú közönséges kondritos kiségitest darabja lehetett egykoron.

A Hayabusa űrszonda által az Itokawa kisbolygóról készített felvétel. A kép 2005-ben készült az aszteroida felszíne feletti 8 km magasságban
(JAXA/Wikipedia; CC BY 4.0)

A kutatás rávilágít arra, hogy milyen fontos és szükséges ezeknek a holdi talajokban megjelenő extralunáris anyagoknak a jövőbeli szisztematikus keresése és vizsgálata. Segítségükkel megérthető a Naprendszer történetében a becsapódások intenzitása és az impaktorok geokémiai változatossága. Az ehhez hasonló szemcsék vizsgálata hozzásegít minket a Föld-Hold rendszer becsapódástörténetének jobb megértéséhez és ahhoz, hogy ebben a folyamatban milyen lényeges szerepet játszhattak az LL kondritos anyagú kiségitestek.

Források:
[1] https://www.lpi.usra.edu/planetary_news/2022/05/03/rare-fragment-of-stony-asteroid-found-in-lunar-soil/
[2] Demidova, S. I. et al. (2022). A micrometeorite from a stony asteroid identified in Luna 16 soil. Nature Astronomy, 8 p.
[3] https://solarsystem.nasa.gov/missions/luna-16/in-depth/
[4] https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/25143-itokawa/in-depth/

Apollo-17 “Rock Star”, avagy 2025-ben visszatérünk a Holdra?

Szerző: Mitre Zoltán

Az Amerikai Egyesület Államok magyarországi Nagykövetsége és az „Amerikai Kuckó” (American Corner) közös szervezésében lehetőség nyílt az Európában tartózkodó két NASA szakemberrel Raphael „Ralph” Grau-val és Jennifer „Jenny” Knotts-al találkozni május 25-én szerdán kora este. A programnak a Corvinus Egyetem “Sóház” campusa adott otthont Budapesten, ahol évek óta működik a nagykövetség tehetséggondozó műhelye, az “Amerikai Kuckó”.

A találkozó egyik nagy eseménye volt az 50 évvel ezelőtti Apollo-17 missziói által visszahozott holdkőzet mintadarabjának megtekintési lehetősége. A programot teljessé tette, hogy Rezsabek Nándor tudományos szakíró és környezetkutató, Planetology.hu főszerkesztő a Földön található kozmikus kőzetekről mutatott be előadást. Az alagsori előadótermet megtöltő közönséget Kovács Tibor, az amerikai nagykövetség tudományos ügyekért felelős attaséja köszöntötte. Ő a program során szinkrontolmácsolásban is szerepet vállalt.

A köszöntő után Raphael Grau tartott előadást. Raphael 35 éve dolgozik a NASA-nál, a Nemzetközi Űrállomás tervezésében is részt vett. Prezentációjában főleg az űrállomás paramétereiről, működéséről kaptunk részletes információkat, beleértve a jelenlegi és jövőbeli kutatásokat. Megtudtuk, hogy az ISS-en zajló jelenlegi kutatások főleg a növényi és emberi élettani folyamatok súlytalanságban történő megváltozását teszik ki. A NASA nagyon készül a hosszú súlytalanságban töltött időt igénylő űrmissziókra. A teljesség igénye nélkül két érdekes példa az elhangzott előadásból:

Az űrhajósok körében régi probléma, hogy az űrbeli tartózkodás után szemük olyan deformációt szenved, ami egyeseknél visszatérés után szemüveg viselését igényli, véglegesen. Másoknál viszont visszaáll az eredeti állapot. Sokáig nem értették ennek az okát. A közelmúlt egyik jelentős eredménye, hogy B12 vitamin folyamatos adagolásával ez a probléma megelőzhető.

Az ún. “iker összehasonlítás” vizsgálat különösen figyelemfelkeltő volt. Itt nem a relativitáselmélet bizonyításáról van szó! Tehát nem azt vizsgálják, hogy a nagy sebességgel Föld körül keringő ikerpár egyike lassabban öregszik-e a földi társához képest! Hanem visszatérés után az űrhajós és a földön maradt ikerpár egészségi állapotát mérik fel alaposan és az eltérés alapján tudnak következtetni a súlytalanság és kozmikus tér okozta változásokra.

Jennifer Knotts PR szakember a NASA-nál, szinte első megszólalása alapján azonnal érezni lehetett ezirányú profizmusát. Jennifer az Artemis programban dolgozik most, előadása elején egy PR filmet mutatott be, ahol a NASA vezetői határozottan megígérték, hogy 2025-ben újra a Holdra lépnek. A filmet Jennifer annyival egészítette ki, hogy két misszió előzi meg ezt, egy ember nélküli és egy Holdat megkerülő emberes misszió (akárcsak az Apollo programok során).

Mint kommunikációs szakember, szakterületének fontosságáról és az űrmissziók irányítótermében a kommunikációs szakember vezető szerepéről beszélt. Mint Jennifer elmondta, a mérnökök és szakértők legalább egy tucat helyre kell, hogy figyeljenek, és közben mindenkinek a saját feladatára is koncentrálni kell. Az űrhajósokkal egy fő, a kommunikációs szakember beszél csak. Ő az, aki összegyűjti a irányítóteremben a szakmai információkat és érthetően kommunikálja az űrhajósok felé a feladatokat, valamint az űrhajósok visszajelzéseit a szakemberek felé. Fontos szerepet tölt be az űrhajósok napjának tervezésében is, amelyet öt perces pontossággal készítenek el. Szemléltetésként még saját asztalát is megmutatta az ISS irányítóközpontjában, és elmagyarázta az egyes feladatokat.

A két szakember előadása után Rezsabek Nándor főszerkesztő tartott előadást a Földön fellelhető, és szülőégitestek szempontjából azonosítható kozmikus anyagokról. Ismertette a holdi eredetű meteoritok típusait, összetételét. A rövid szakmai előadás ideálisan vezette fel a meeting záró akkordját, az eredeti Apollo-17 holdkőzetet, amit az illetékesek közben előkészítettek. A szakmai előadások után ezt meg lehetett tekinteni és konferenciabeszélgetésre is volt lehetőség a NASA szakembereivel. A találkozó egyik nagy előnye volt, hogy lehetett négyszemközt is részletesen konzultálni a két előadóval: Raphael az ISS-el kapcsolatos kérdésekre válaszolt, míg Jennifert az Artemis programról lehetett kérdezni.

Készültek közös fényképek, a vendégek ajándékokat vihettek haza, mondhatni az igazi profi amerikai PR mindenki számára nagyon jó benyomást gyakorolt és élményként hatott. A Planetology.hu szerkesztőségéből Kocsis ERzsóval valamint Farkas Csabával az Impulzus podcast főszerkesztőjével közösen változatos szakmai kérdéseket tehettünk fel Raphaelnek és Jennifernek. Tehetséggondozásról, Star Trek-ről és égi mechanikai kérdésekről is beszéltünk.

A találkozóról elmondhatjuk, hogy szakmailag és azon túl is hasznos és motiváló volt. Bár nem lett kimondva, de érezhető volt, hogy a NASA kifejezetten felerősítette a lépéseket az űrkutatás terén. Közismert, hogy mind az orosz, mind a kínai űrprogramok nagy ambíciókat dédelgetnek, így talán majdhogynem fix ígéretnek vehető, hogy 2025-ben újabb emberes NASA misszió indul útnak a Holdra.

A fotókat Kocsis ERzsó, Rezsabek Nándor és Wollner Tibor készítette

A cseljabinszki meteorit részese lehetett a Holdunkat létrehozó ütközésnek

Szerző: Ivanics-Rieger Klaudia

Az oroszországi Cseljabinszk városa felett 2013-ban felrobbant meteoritnak köze lehetett a Holdat létrehozó hatalmas ütközéshez. E lenyűgöző felfedezés a meteoritokban található ásványok mikroszkópos elemzésén alapul, mely új módszereket tár fel az űrben lezajló ütközések vizsgálatában. Bár további elemzésekre is szükség van, e technika új megoldást jelenthet a Naprendszer korai, erőszakos történetének megértéséhez, és ahhoz, hogyan fejlődött és minként érte el a mai formáját. „A meteoritok becsapódási kora gyakran ellentmondásos.” – nyilatkozta Craig Walton geológus, a Cambridge-i Egyetem kutatója. – „Munkánk azt mutatja, hogy még több bizonyítékot kell szereznünk, hogy biztosabbak lehessünk a hatástörténettel kapcsolatban – ez majdnem olyan, mint nyomozni egy ősi bűnügyi helyszínen.” Az aszteroidák és meteoritok egyfajta időkapszulaként szolgálnak a Naprendszer 4,5 milliárd évvel ezelőtti létrejöttéről, ezért gyakran tanulmányozzák őket. Naprendszerünk ugyanis az újszülött Napunk körül keringő gáz- és porkorongból, az úgynevezett protoplanetáris korongból alakult ki, a bolygók a kisebb kőzetdarabok ismétlődő, építő jellegű ütközései nyomán alakultak ki. Itt, a Földön és más bolygókon is rendkívül nehéz követni ezt a folyamatot, mivel ezt a geológiai és időjárási jelenségek már sokszor felülírták; így még a nagy felületi behatások (például óriási kráterek) is eltűnhettek. Az aszteroidák viszont többé-kevésbé változatlan formában keringenek az űrben, amíg a Föld gravitációs vonzása maga felé nem téríti őket, hogy végül meteoritként zuhanjanak le a bolygóra. A meteoritokban található ásványok azonban egy új módszer segítségével segíthetnek meghatározni az ősi ütközések korát. Ezek egyike a cirkonkristályok urán-ólom általi kormeghatározása. Amikor ugyanis a cirkon kialakul, uránt tartalmaz, viszont elutasítja az ólmot. Tehát a cirkonban található ólom az urán radioaktív bomlásának terméke kell, legyen. Az uránról tudjuk, hogy mennyi idő alatt bomlik le, ezért az ólomkomponensből következtethetünk a cirkon korára. Ezenkívül egy becsapódás részben vagy teljesen is „visszaállíthatja” a radioizotópos ásvány korát. Ennek segítségével a tudósok megállapították, hogy a cseljabinszki meteorit két becsapódáson ment keresztül, az egyik körülbelül 4,5 millárd éve, a másik pedig körülbelül 50 millió évvel történt. Walton és kollégái ezen dátumokat akarták megerősíteni azzal, hogy megvizsgálták, hogyan törtek szét a meteoritban található foszfát ásványok az egymást követő becsapódások során.

„A leggyakoribban előforduló primitív meteoritok foszfátjai fantasztikus célpontok a szülőégitesten történt sokkhatások kormeghatározására.” – mondta Sen Hu, a Kínai Tudományos Akadémia geofizikusa. Összehasonlításként az új urán-ólom kormeghatározást vették alapul, a kutatók megvizsgálták a foszfát ásványok széttöredezésének mikroszkopikus részleteit, valamint a becsapódás által kiváltott hő hatását a kristályszerkezetre. Azt találták, hogy a korábbi, 4,5 milliárd évvel ezelőtti becsapódás apró darabokra törte a foszfát ásványokat és magasabb hőmérsékletnek tette ki őket. A későbbi becsapódás kisebbnek tűnt, alacsonyabb nyomással és hőmérséklettel. A kutatócsoport által szerzett eredmények arra utalnak, hogy ez a becsapódás kevesebb mint 50 millió évvel ezelőtt történt. Valószínűleg ez volt az a becsapódás, amely a szülőégitestről letörte a meteoritot és ütközési pályára állította a Föld felé. A korábbi becsapódással kapcsolatos bizonyítékok alátámasztják azt az előzetes bizonyítékot, hogy 4,48-4,44 milliárd évvel ezelőtt több, nagy energiájú ütközés történt a világűrben. Ez az időkeret azért fontos, mert egybeesik a Naprendszer két, egymástól különálló formálódási időszakával: vagy az óriásbolygók vándorlásával vagy a Holdat létrehozó ősi ütközéssel.

„Az a tény, hogy ezekben az aszteroidákban jelenleg intenzív olvadás figyelhető meg, a Naprendszer átrendeződésére utalhat, akár a Föld-Hold rendszer kialakulásának, akár az óriásbolygók keringési mozgásának eredményeként.” – mondta Walton.

A bolygóvándorlások során az óriásbolygók (Jupiter, Szaturnusz, Uránusz és Neptunusz) a jelenlegi helyzetükhöz képest a Naptól távolabb alakultak ki, és idővel közelebb kerültek egymáshoz. Ez a mozgás sok gravitációs perturbációt okozott a korai Naprendszerben, ami számos ütközést eredményezett. A Hold kialakulásánál egy Mars-méretű, a Földhöz képest fele akkora égitest körülbelül 4,5 milliárd éve súroló ütközéssel csapódott a Földnek. A Theia fantázia-nevű égitest maga megsemmisült és a Földből is anyag szakadt ki, ezen anyagot a Föld gravitációs vonzása maga körül tartotta és a kőzettörmelékből néhány millió év alatt összeállt a Hold.

A kutatók szerint a következő lépés, hogy újra gondolják a Hold keletkezésének pontos idejét, a kutatás pedig több fényt deríthet erre a lenyűgöző rejtélyre.

Forrás: sciencealert.com

Megoldódott a holdi kocka rejtélye

Szerző: Kovács Gergő

Megoldódott a titokzatos holdi “kocka” rejtélye: tavaly bejárta az internetet a kínai Jütü-2 holdjárótól 80 méterre lévő különös, kockára hasonlító objektum. Az űrszonda ezt az objektumot megközelítve világossá tette számunkra, hogy “mindössze” egy holdi szikláról van szó, mely egy kráter pereménél helyezkedik el. A sziklát Jáde Nyúlnak nevezték el, mely egyébként a Jütü-2 beceneve is egyben.

Képek: CNSA

A Hold egy darabja lehet a Föld Kamoʻoalewa nevű kvázi-holdja

Szerző: Rezes Dániel

A Holdat már keletkezése óta érik különböző méretű becsapódások, melyek változatos morfológiájú krátereket hoznak létre felszínén. Az ilyen impakt események során képződő törmelékanyag egy része eléri a holdi szökési sebességet (2,38 km/s) és elhagyja az égitest gravitációs erőterét, melynek eredményeként a világűrbe távozik. Ezeknek bizonyos hányada meteoritként egy másik égitest (pl. a Föld) felszínére hullhat, azonban néhány közülük igen érdekes pályára is állhat. Egy arizonai és virginiai kutatók társszerzőségében megjelent friss tanulmány az első alkalommal mutathat be egy olyan égitestet, mely egy ősi, Holdat ért becsapódás kilökött kőzetanyagát képviselheti. Ez a rejtélyes égitest a Föld (469219) 2016 HO3 Kamoʻoalewa nevű kvázi-holdja.

A 2016 HO3 Kamoʻoalewa (fehér) és a Föld (kék) pályája a Naprendszerben és helyzetük 2018. január elsején
Forrás: Tomruen/Wikipedia; CC BY-SA 4.0

A 2016. április 27-én felfedezett Kamoʻoalewa (hawaii név; oszcilláló mozgást végző égitestre utal: ka=a, moʻo=töredék, a=valaminek a, lewa=oszcillál) nevű kisméretű (40-100 m átmérőjű) aszteroida jelenleg a legkisebb, legközelebbi és legstabilabb olyan kvázi-holdja a Földnek, mely folyamatosan kering bolygónk körül, azonban túl távol található ahhoz, hogy hagyományosan holdnak nevezhessük. Az ilyen égitestekről – melyek a Nap körüli keringésük során relatíve közel maradnak a Földhöz – jelenleg kevés tudás áll rendelkezésünkre, ugyanis méretükből adódóan észlelésük nehézségekbe ütközik.

A Föld-Hold rendszerben elhaladó Kamoʻoalewa kvázi-holdról készült fantáziarajz (Pixabay)

A kutatók az Arizona államban található Nagy Binokuláris Távcsövet (LBT; Large Binocular Telescope) és Lowell Felfedező Távcsövet (LDT; Lowell Discovery Telescope) felhasználva meghatározták több más tulajdonság mellett a Kamoʻoalewa spektrumát is. Az égitest spektruma vörösebb (vagyis a növekvő hullámhosszal a reflektancia (felszín visszaverő képessége) is nő) tartományban mozog, mint a tipikus S-típusú aszteroidák spektrumai. Az ilyen spektrum szilikátokból felépülő kőzetekre jellemző, azonban a Belső Naprendszer aszteroidáinak tipikus értékeinél vörösebb értékekkel. A spektrumot a tudósok számos extraterresztrikus kőzettípus színképével összevetve azt találták, hogy a legnagyobb egyezés a holdi szilikátos kőzetekkel (Apollo-14 felföldi talaj) figyelhető meg. Ez az értelmezés figyelembe veszi az űrbéli mállást (space weathering) is és megnöveli annak a lehetőségét, hogy a Kamoʻoalewa holdi kőzetanyagból épül fel.

Az eddigi vizsgálatok alapján erős a gyanú, hogy a Kamoʻoalewa a Föld-Hold rendszerből származik. Az igazság felderítéséhez azonban még alaposabb és részletesebb vizsgálatokra lesz szükség. „Ha az utolsó szöget is igazán szeretnénk beverni a koporsóba, akkor oda kell menni és meg kell látogatni, találkozni kell ezzel a kis kvázi-holddal és sok közeli megfigyelést kell tenni.” – nyilatkozta a kutatásban részt nem vevő Daniel Scheeres, a Colorado Boulder-i Egyetem (University of Colorado Boulder) bolygókutatója. „A legjobb lenne, ha mintát vennénk.”

Kína nemrég bejelentette, hogy 2025-ben indítja útjára következő űreszközét, melynek egyik célja a Kamo’oalewa aszteroidán történő mintavételezés lesz. A begyűjtött kőzetanyagot az űreszköz kapszulában juttatja vissza a Földre. A ZhengHe névre keresztelt többcélú küldetés a feladataihoz szükséges műszerek széles palettáját fogja szállítani. Ilyen eszközök a hagyományos és multispektrális kamerák, spektrométerek, radar, magnetométer és különböző részecskedetektorok. Az orosz-kínai kooperációban végrehajtott küldetés célja többek között az, hogy információt szolgáltasson a naprendszerbeli kis égitestek képződésére és fejlődésére, a kvázi-holdak eredetére, mozgásukra és ásványtani-kőzettani tulajdonságaira, különös tekintettel a vízre és más illók jelenlétére vonatkozóan.

Források:

[1] https://www.sciencenews.org/article/kamooalewa-moon-space-rock-quasisatellite
[2] https://en.wikipedia.org/wiki/469219_Kamo%CA%BBoalewa
[3] https://planetology.hu/bolygos-rovidhirek-orosz-kinai-kisbolygo-es-ustokosmisszio/
[4] Sharkey, B. N., Reddy, V., Malhotra, R., Thirouin, A., Kuhn, O., Conrad, A., … & Veillet, C. (2021). Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamoʻoalewa. Communications Earth & Environment, 2(1), 231., 7 p.

Dupla ütközés hozhatta létre Holdunkat

Szerző: Kovács Gergő

A Hold keletkezésére a múltban számos elmélet született: egyes hipotézisek szerint kísérőnk a gyorsan forgó Földből szakadt ki; míg mások szerint a Hold eredetileg a Nap körül, elnyúlt pályán keringett, később pedig a Földhöz túl közel kerülve pályára állt bolygónk körül. Ma, a legelfogadottabb elmélet szerint 4,5 milliárd évvel ezelőtt egy Mars-méretű bolygócsíra, a Theia ütközött a Földnek, összeolvadva bolygónkkal. A kozmikus karambol során kirepülő törmelékből jött létre a Hold; továbbá egyes kutatások szerint feltételezhető, hogy a külső bolygórendszerben keletkezett, majd később a Föld közelébe került Theiáról származik bolygónk vízkészletének jelentős része.

Egy, a Planetary Science Journalban megjelent új tanulmány szerint a Holdat létrehozó bolygóütközés valójában két fejezetből állt. Az első ütközés során a Theia körülbelül 45 fokos szögben találta el a Földet, „lecsúszva” bolygónkról. Ekkor az égitest jelentős mértékben veszített Nap körüli keringési sebességéből. Néhány százezer évvel később történt a második ütközés. Ekkor a Theia már elég lassan mozgott ahhoz, hogy a Föld és a Theia végleg egybeolvadjon, anyaguk pedig összekeveredjen. E tanulmány, melynek az alapját több ezer számítógépes szimuláció szolgáltatja, nem csupán a Föld-Hold bolygórendszer keletkezésének pontosabb megismerésében segíthet, de választ adhat arra a kérdésre is, miért lett a Vénusz és a Föld ennyire eltérő?

3D szimuláció az első, feltételezetten súroló ütközésről. A Föld és a Theia itt egy órával az ütközés utáni állapotban láthatók
(A. Emsenhuber / University of Bern / University of Munich)

„A kulcs a planetológiai különbségekben rejlik.” – szögezte le Erik Asphaug, az Arizonai Egyetem munkatársa, a kutatás vezetője. Hogy miért különbözik ennyire a Vénusz és a Föld, a Hold adhatja meg a választ. „Nem érthetjük meg, hogyan keletkezett a Föld, anélkül, hogy tudnánk, hogyan jött létre a Hold.” – magyarázta Asphaug – „Ők mindketten ugyanazon kirakós részei.” A szimulációk pedig néhány új elemet tehetnek hozzá a már meglévő kirakóshoz.

Az első ütközéskor a Theia anyagának nagy része „továbbcsúszott”
(E. Asphaug et al. / Planetary Science Journal 2021 October)

Először is, a Theia sebessége nem lehetett sem túl gyors, sem túl lassú. Ha túl gyorsan ütközik a Földnek, a két égitest egy bolygóközi törmelékfelhővé robban szét. Ha túl lassan közelíti meg a bolygónkat, a Theia a Föld holdjává válik. Az eredeti, „egy ütközéses” modell nem magyarázza meg, miért e két fenti véglet közötti, ideális sebességgel ütközött a Theia a Földnek. Az új, „két ütközéses” modell azonban magyarázatot ad erre a kérdésre: kezdetben a Theia még nagy sebességgel mozgott, az első ütközés azonban lelassította annyira, hogy a második ütközés során összeolvadhasson bolygónkkal.

A második ütközés során a Földdel összeolvadó Theia létrehozott egy anyagkorongot, melyből később kialakult a Hold.
(E. Asphaug et al. / Planetary Science Journal 2021 October)

A másik probléma az eredeti modellel az, hogy a Holdnak javarészt a Theia anyagából kellene állnia. Az Apollo misszió során hozott holdkőzet minták azonban azt mutatták, a Hold összetétele nagyon hasonló a Földéhez. A Föld és a Theia dupla ütközése azonban lehetővé tette, hogy anyaguk alaposabb keveredése által egy, a Föld összetételéhez nagyon hasonló hold jöhessen létre.

Asphaug és csapata számára az igazi meglepetés az volt, mikor kiderült, az efféle dupla ütközések hogyan hatottak volna a Vénuszra. A szimulációk szerint a Földnek ferdén ütköző és így „lecsúszó” égitestek fele a Vénusz irányába haladt volna tovább, mely bolygó minden ilyen égitestet magába olvasztott volna. Minél több ilyen égitest végezte volna a Vénuszon, annál gazdagabb lett volna a külső Naprendszerből származó illóanyagokban; továbbá annál nagyobbak lettek volna a planetológiai különbségek közte és a Föld között. E felfedezés felrázta az eredeti kutatást: ha a Vénuszt több jelentős becsapódás érte, akkor többé nem az a kérdés, hogy „Miért van a Földnek holdja?”, hanem az, hogy „A Vénusznak miért nincs?” A legvalószínűbb az, hogy csak ez az egy ilyen esemény történt, amely a Holdat létrehozta; viszont ha több ilyen is volt, akkor a sorozatos kataklizmák eltüntethették a Vénusz már meglévő holdjait, ahogy az is lehetséges, hogy a Vénuszon történt becsapódások sokkal kisebb erejűek voltak. E kérdés megválaszolásához egy mintavevő küldetésre van szükség, mely felfedné, mennyire hasonlíthat a Vénusz kémiai összetétele a Föld-Hold rendszeréhez.

(Jelen cikk az Élet és Tudomány 2021/51-52-es számában megjelent cikk másodközlése.)

Decemberi bolygórandevú(k)

2021 utolsó hónapjának elején, a nyugati égen többszörös bolygóegyüttállásban gyönyörködhetünk: a Hold, Vénusz, Szaturnusz és Jupiter négyese több napon át is a napnyugta utáni égbolt ékköve lesz! A Vénusz-Jupiter-Szaturnusz bolygók szinte mozdulatlan hármasát Holdunk vékony, majd egyre növekvő sarlója egészíti ki december 6-10. között. Hatodikán a Hold leheletvékony sarlójától keletre a Vénusz fényes, sárga “csillaga” következik, mely kisebb távcsővel is elegáns sarlónak mutatkozik. Majd a Szaturnusz és a Jupiter következnek. A napok múlásával Holdunk vastagodó sarlója hol a Vénusz és Szaturnusz között, hol a Szaturnusz és Jupiter között, hol pedig a Jupiter mellett helyezkedik majd el. December 10-én pedig a négy égitest egymástól egyenlő távolságra fog elhelyezkedni. Ne hagyjuk ki ezt a több napos égi randevút!
(Képek forrása: Stellarium)

Apollo-holdkőzet testközelből

Szerző: Rezsabek Nándor

A NASA Apollo-missziói által Földünk hűséges kísérőjén gyűjtött, majd anyabolygónkra fuvarozott holdkőzetekhez szoros barátság fűz. A Magyar Természettudományi Múzeum (MTM) gyűjteményében levő Apollo-11 és -17 mintákról 2018-ban még a kiállítói téren kívüli hatalmas raktárrendszerből tudósítottam az Élet és Tudomány hasábjain (Holdszilánkok. Apollo kőzetminták a Természettudományi Múzeumban. 2018/45.). Ennek beharangozója blogoldalamon itt jelent meg: https://rezsabeknandor.blogspot.com/2018/10/apollo-holdkozetek-termeszettudomanyi_95.html. 2019-ben az évfordulós Apollo 50 tárlaton a felbecsülhetetlen értékű példányok, valamint a legnagyobb méretű-tömegű hazai holdi meteorit mellett megtisztelő módon saját holdkutatás-ereklyéim is kiállításra kerültek: https://rezsabeknandor.blogspot.com/2019/10/a-hold-opusz-es-relikviaim.html. A mostani hétvégén a Juhari Zsuzsanna-díj elismerő oklevelével jutalmazott blogoldalam pedig az Apollo-17 űrhajó legénysége által a Földre hozott holdkőzetről tudósít – testközelből!

Természetesen az MTM „A Hold felfedezése” címmel illetett időszaki kiállításának volt és van más vonatkozása is. A november 3-i megnyitón felvonultak a nemzetközi űrhajós kongresszus tagjai, a Holdra sosem jutott Puli rover manőverezett, nemcsak kiállítási tárgyként díszelgett, továbbá folyamatosan zajlottak és zajlanak a témában viszont kétségkívül szakértő Bérczi-Hargitai-Kereszturi planetológus-triumvirátus előadásai. A tárlaton látható továbbá az említett Apollo-11 és -17 goodwill, látványos Armstrong űrruhájának méretarányos 3D-es replikája. Sok az információ, és szerencsére a kiállított holdtérkép magyar vonatkozású elnevezései között a Hédervári-kráter is ott virít, viszont a hatalmas holdi panorámakép elől egy fotó kedvéért sem mozdul el a teremőr néni.

De lehet itt bármi, a lényeg a 70215,41 jelzetű holdi mare bazalt! Az eredeti, 70215-ös, 8110 g-os, 230x130x105 mm-es, mikrometeoritok becsapódásának nyomát őrző kőzetmintát 1972 decemberében a Derültség tengerének peremén, a Taurus-Littrow-völgyben a holdkomptól 60 m-re az a Harrison Schmitt geológus gyűjtötte, aki az első KUTATÓ volt a holdfelszínen. Ne feledjük (a számomra példaképként szolgáló Jack Schmitt kivételével), az Apollo-missziók katonai pilótákból űrhajóssá avanzsált tagjai (korábbi űrrepüléseik felkészítését leszámítva) természettudományos ismeretek, valamint terepi munka gyakorlatának híján voltak. A gondos kezek aztán már földi laboratóriumban vágták a 3,84 milliárd éves magmás kőzetet, geokémiai, ásvány- és kőzettani vizsgálatain túl darabjait tudományos kísérletekre is felhasználtak. Kémiailag a szilícium-dioxid (SiO2) mellett magas titán-dioxid (TiO2) tartalma érdemel figyelmet, valamint vas-oxidot (FeO) tartalmaz legnagyobb arányban. Ásványtani szempontból a piroxén, a plagioklász és az olivin a meghatározó.

Az Amerikai Egyesült Államok kormánya által támogatott, belsős és külsős kurátorok-kreátorok, valamint közreműködő partnerek révén megvalósult tárlat a Magyar Természettudományi Múzeum (1083 Budapest, Ludovika tér 2-6.) Kupolacsarnokában az év végéig védettségi igazolvány felmutatásával a nyitvatartási időben díjmentesen látogatható. A kiállított 120 g-os 70215,41 kifejezetten bemutató célokat szolgál, valódi „rock star”-ként turnézza körül a Földet. Ne mulasszuk el magyarországi vendégszereplését.

A fiatal Hold korábban gondoltnál hevesebb becsapódásai

Szerző: Rezes Dániel

A becsapódások a Föld-Hold rendszer fejlődésében jelentős szerepet játszottak, azonban számos jel mutat arra, hogy a Földünk égi kísérőjének korai időszakában keletkezett krátereknek nyoma veszhetett a későbbi becsapódások során. Ez olyan bizonyítékok alapján feltételezhető, mint a kráterek korolása, a kisbolygók dinamikája, holdi kőzetminták, a becsapódásos medencékre (hatalmas impakt kráterek) kidolgozott modellek és a Hold fejlődésére vonatkozó modellek. Egy új kutatás kimutatta, hogy sok – a Déli-Sark-Aitken-medencéhez hasonló – ősi impakt medence már akkor létrejöhetett, amikor a Holdi Magma Óceán (LMO, Lunar Magma Ocean) még képlékeny állapotában volt.

A holdi Déli-Sark-Aitken-medence. A fekete kör a kráter alakjára korábban gondolt megközelítés, míg a szürke és lila ellipszisek (külső és belső gyűrű) már a krátermorfológia modernebb megközelítését jelölik. Forrás: Wikipedia/Ittiz; CC BY-SA 3.0

A Holdi Magma Óceán modell a kőzetbolygók fejlődésére vonatkozó, mai napig a tudományos világban legelfogadottabb megközelítés, melyet először 1970-ben Wood és munkatársai, valamint Smith és munkatársai írtak le és neveztek el. A modell egy olyan folyamatot ír le, melyben a nagymértékben olvadt Holdból kialakult egy teljesen megszilárdul égitest, elkülönült a mag, köpeny és kéreg, vagyis kialakult a napjainkban is ismert égitest. A hűlési folyamatnak a hossza Elkins-Tanton és munkatársainak 2011-ben publikált cikke alapján több tízmillió éves időskálán mérhető, azonban fontos megjegyezni, hogy a kutatók között nincs egyetértés ennek időbeliségében, a különböző modellek néhány millió év és 200 millió év közötti időskálán mozognak.

A holdi Hagma Óceán fantáziaképe
(NASA Goddard Space Flight Center)

A becsapódások hatására létrejött kráterek alakja jelentősen eltér az LMO keletkezése közben és a megszilárdulása utáni időszakban. Ez a különbözőség azért lehetséges, mert ha egy kisbolygó vagy egyéb kisebb égitest puha felszínre érkezik, akkor annak kevesebb lenyomata marad, mint ha kemény felszínt érne. Ez azt jelenti, hogy kevés geológiai és geofizikai nyoma marad annak, hogy becsapódás történt az adott térszínen. Az idő előrehaladtával a Hold anyaga megszilárdult és ezáltal a becsapódások távérzékeléssel már azonosítható alakzatokat voltak képesek maguk után hagyni.

„Kötelességünk, hogy megértsük a Naprendszer történetének legkorábbi fejezeteiben végbement heves bombázást és a kráterezettségi adatokat annak érdekében, hogy kiegészítsük a bolygók kialakulásának és fejlődésének történetét.” – nyilatkozta Dr. Miljkovic, a tanulmány első szerzője.

Az Apollo-8 képe a Déli-Sark-Aitken-medence északi határán húzódó hegyekről (NASA)

A kisbolygók dinamikáját a holdi fejlődésre vonatkozó modellek összevetésével Dr. Miljkovic és csapata arra a következtetésre jutott, hogy a Hold elveszthette a legkorábbi becsapódásaira utaló nyomokat. A tanulmányban kísérletet tettek a kutatók, hogy felfedjék az ellentmondásokat az elméletek és a kráterezettségből származó megfigyelések között, ezzel rámutatva arra, hogy még várnak ránk megértésre szoruló elemek a Hold történetében.

A következtetéseket a jövőben át lehet fordítani a korai földi folyamatokra is, mely elvezet minket a fiatal bolygónkat ért becsapódásos események megértésére és arra, hogy azok hogyan hatottak a Föld későbbi fejlődésére.

Források:

[1] http://www.sci-news.com/space/young-moon-bombardment-10065.html
[2] Miljković, K., Wieczorek, M. A., Laneuville, M., Nemchin, A., Bland, P. A., & Zuber, M. T. (2021). Large impact cratering during lunar magma ocean solidification. Nature Communications, 12(1), 1-6.
[3] Rezes, D. (2021). Az NWA 13637 holdi meteorit kőzettani és geokémiai vizsgálati eredményei. Diplomamunka, Eötvös Loránd Tudományegyetem, Kőzettan-Geokémiai Tanszék, Budapest, 122 p.
[4] Smith, J.V., Anderson, A.T., Newton, R.C., Olsen, E.J., Wyllie, P.J., Crewe, A.V., Isaacson, M.S., & Johnson, D. (1970). Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. Proceedings of the Apollo 11 Lunar Science Conference, 1, 897-925.
[5] Wood, J. A., Dickey Jr, J. S., Marvin, U. B., & Powell, B. N. (1970). Lunar anorthosites and a geophysical model of the moon. Geochimica et Cosmochimica Acta Supplement, 1, 965-988.
[6] Elkins-Tanton, L. T., Burgess, S., & Yin, Q. Z. (2011). The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology. Earth and Planetary Science Letters, 304(3-4), 326-336.