Van-e új a Mars alatt?

Szerző: Kovács Gergő

2018. november 26-án leszállt a Marsra a NASA InSight nevű szondája, hogy műszereivel mélyebb betekintést nyújtson a vörös bolygó geológiájába, belső felépítésébe, szeizmológiai jellemzőibe. Az azóta eltelt csaknem két esztendő alatt temérdek új információhoz jutottak a tudósok, melyet a NASA a napokban publikált.

Az InSight szeizmométere, a SEIS (Seismic Experiment for Interior Structure – SEIS) eddig 733 marsrengést érzékelt. Ezek a mérések lehetővé teszik a tudósok számára, hogy belőlük az égitest (Föld, Hold vagy épp a Mars) belső szerkezetére következtessenek. Földünk belső szerkezetének tanulmányozása óta tudjuk, hogy a rengéshullámok egy réteghatárhoz érve irányt változtatva terjednek tovább. A geológusok ennek ismeretében jöttek rá arra, hogy bolygónk több, eltérő fizikai tulajdonságú gömbhéjból épül fel.

Az InSight mérései során fény derült arra, hogy a Mars kérge vékonyabb, mint eddig gondolták, továbbá kettő vagy három alrétegből épülhet fel, vastagsága 20 és 30 kilométer között lehet. A vörös bolygó belső szerkezetére mindez idáig csupán a bolygó méretéből tömegéből következtethettek.

Az InSight mérései pontosították ismereteinket a Mars belső felépítéséről.
Kép forrása: S. Cottaar/P. Koelemeijer/J. Winterbourne/NASA

A legfontosabb eredmény azonban az, hogy a Mars magja még folyékony lehet, a hőfeláramlás (és így a mágneses dinamó hatás) azonban már leállt vagy csak nagyon gyenge, a Mars vastag köpenye pedig egyfajta szigetelőrétegként működik, megakadályozva, a konvekció és így a mágneses mező kialakulását.

Forrás: NASA, SEIS InSight

Város-méretű kisbolygók sorozták meg a Földet

Szerző: Rezsabek Nándor

A kutatók eddig is tisztában voltak azzal, hogy a földtörténet korai időszakában planétánkat óriási méretű kisbolygók bombázták, de egy friss elemzés szerint ennek mértéke tízszerese volt a korábban feltételezettnél – számol be a Phys.org. Ez a 2,5-3,5 milliárd évvel ezelőtti, átlagosan 15 millió évente jelentkező becsapódássorozat a dinoszauruszokat kipusztító impakt eseményhez hasonló nagyságrendű volt. Ennek során egy-egy ütköző aszteroida mérete meghaladta egy városét, sőt elérhette egy megyéét is. A kutatók azt is vizsgálták, hogy mindez milyen hatással volt Föld kőzetburkának geokémiájára. Eddigi eredményeiket a Goldschmidt Geokémiai Konferencián ismertették.

Az ősi Föld környezeti viszonyai összehasonlíthatatlanul mostohábbak voltak a ma ismert anyabolygóhoz képest. A tudósok úgy gondolják, hogy planétánkat óriási számban bombázták 10 km-t is meghaladó méretű kisbolygók, és ez komoly hatással volt a felszín kémiai összetételre, valamint jelentősen befolyásolta az élet elterjedését. Akár egyetlen ilyen becsapódás is a 65 millió éve a dínókat a föld színéről eltörlő Chicxulub-eseménnyel összehasonlítható nagyságrendű volt. Tegyük azonban hozzá, hogy az ős-Föld viszonyai jelentősen különbözték a Chicxulub-korabelitől, így az impakt események hatásai is igen eltérőek voltak.

Fotó: SwRI/Simone Marchi, Dan Durda

A hasonló típusú becsapódási események során keletkezett kráterek láthatóak a Holdon, valamint a kőzetbolygókon, a Földön azonban a légkörrel összefüggő időjárási eróziós folyamatok, valamint a lemeztektonika eltüntette a szemünk elől ezen az ősi asztroblémek létezésének kézzel fogható bizonyítékait. Mindezek ellenére az ősi becsapódások „visszhangja” ott van beépülve a legrégebbi földi kőzetekben apró gömböcskék, ún. szferulák formájában. Egy-egy hatalmas becsapódás során a megolvadó és kirepülő anyag a légkörben lehült, majd a földre visszahullva üvegszerű formában épült be az alapkőzetbe. Minél nagyobb volt egy impakt esemény energiája, az erre utaló részecskék annál távolabbi helyeken is fellelhetők geológiai jelző-réteget képezve.

Dr. Simone Marchi, a Colorado állambeli Délnyugati Kutatóintézet munkatársa vezetésével most az egykori becsapódásoknak új modelljét dolgozták ki, majd ennek „működőképességét” az ősi szferula-rétegek adatainak statisztikai elemzése során „tesztelték”. Arra jutottak, hogy a Föld korai időszakára jellemző meteoritbombázás eddigi modelljei jelentősen alábecsülték a becsapódási események számát, amelynek bizonyítékait azonban az impaktitrétegek megőriztek. A becsapódások fluxusa egy tízszeres faktor bevezetését indokolja a 2,5-3,5 milliárd évvel ezelőtti jóval gyakoribb impakt eseményszám miatt. Mindez azt jelenti tehát, hogy ebben a korai földtörténeti időszakban egy-egy Chicxulub-jellegű esemény 15 millió éves gyakorisággal is bekövetkezhetett.

A kutató elmondta, hogy minél jobban megismerjük az ősi Föld viszonyait, annál jobban megértjük azt, hogy a kozmikus ütközések olyanok, mint elefánt a porcelánboltban. Energiájuk a földkéreg és a földi légkör fejlődéstörténetét alapvetően befolyásolta, ugyanakkor számuk és nagyságrendjük pontos ismeretének hiányában hatásukról a modellek gyakorta megfeledkeznek.

Példának okáért most már azt is vizsgálják, hogy a becsapódásoknak milyen szerepe volt a légkör oxigéntartalmának változásában, a légkör „evolúciójában”. A kutatási eredmények azt mutatják, hogy az intenzív becsapódások időszakában a légköri oxigén aránya drámain ingadozott. Tekintettel a gáznak a Föld fejlődéstörténetében, különösen pedig az élet fejlődésében játszott fontosságára, ez az összefüggés a további vizsgálatokat különösen fontossá teszi. Dr. Simone Marchi szerint ez jelenti majd a kutatások következő szakaszát.

Az arizonai Barringer-kráter. Fotó: Wikimedia Commons

Dr. Rosalie Tostevin, a Fokvárosi Egyetem kutatójának véleménye szerint ezek a nagyenergiájú becsapódások nyilvánvalóan hatalmas pusztítást végeztek, ugyanakkor erről az időszakról már csak minimális mennyiségű földi kőzetanyag tanúskodik. Ebből következtében kevés a közvetlen bizonyíték, a környezeti és ökológiai hatások pedig csak becsülhetők. Éppen ezért a Dr. Simone Marchi által felvázolt modell nagymértékben segíthet jobban megérteni a becsapódások számát és nagyságrendjét.

A kémiai markerek egyes értelmezése szerint az oxigénszint 2,5 milliárd évvel ezelőtt megkezdődött folyamatos emelkedése előtt is már az őslégkör tartalmazta az életadó gázt – mindez azonban továbbra is vitára ad okot a témával foglalkozó tudományos közösségben. Eddig ennek kérdéskörét jellemzően a Föld, mint égitest, valamint az élet fejlődése alapján értelmezték – most az erre vonatkozó vizsgálatok tehát kiegészültek a Földön kívüli (extraterresztrikus) erők hatásainak figyelembevételével.

Mit nem tudnak a bolygók?

Szerző: Kovács Gergő

A közelmúltban látott napvilágot egy cikk a 24.hu, illetve a starthirek.hu oldalakon, miszerint a bolygók állását is figyelembe véve tesz “jóslatokat” a hazai mentőszolgálat a várható esetszámokra. A cikk szerint a Hold, továbbá a bolygók állását is figyelembe veszik ezen előrejelzések készítésekor, a prognózisok és az eddig feldolgozott adatok szerint leginkább a Vénusz és Mars pozícióival találnak összefüggéseket…

Hogy rávilágítsak, miért nincs valójában összefüggés a betegszámok és a bolygók mozgása között, feltétlen meg kell említeni, hogy egy test (jelen esetben a Vénusz és a Mars) másik testre ható vonzóereje a távolság négyzetével csökken. A Vénusz tömege 0,8-szorosa a Földének, a Marsé pedig 0,1-szerese. A Vénusz távolsága tőlünk 40 millió és 261 millió kilométer között változik. A Mars esetében ez a szám 62 millió és 400 millió kilométer közt változik. Ezek az égitestek olyan nagy távolságra vannak tőlünk, hogy egy autó vagy egy közeli épület hasonló mértékű, esetleg nagyobb hatást gyakorol ránk gravitációs módon.

Miért tűnhet akkor mégis úgy, hogy összefüggés van e két dolog között? Amiért két számnak lehet legnagyobb közös osztója és legkisebb közös többszöröse is, más szóval ezen egyezések a puszta véletlen művei. Naprendszerünk bolygói olyan nagy távolságra vannak tőlünk és egymástól is, hogy teljesen értelmetlen bármiféle, életünkre gyakorolt hatásukat keresnünk. (Ami nem jelenti azt, hogy Holdunknak nincs kimutatható hatása: teliholdkor romlik az alvás minősége, kedvezőtlen hatással van a vérnyomásra, továbbá a női ciklus is a Hold 28 napos ciklusát követi.) Naprendszerünk egy több milliárd éve stabil rendszer, a bolygók jelentős pályaháborgások nélkül keringenek csillagunk körül.

A bolygók pozíciói és a megbetegedések száma közötti kapcsolat feltételezése egy súlyos érvelési hiba, az ún. hamis okozat, melyet A te érvelési hibád (hibad.hu) nevű weboldalon mutatnak be kiválóan:

“Az, hogy két dolog változásai vagy előfordulásai egybeesnek, nem jelenti feltétlenül azt, hogy azok közül egyik a másikat okozza vagy akár csak elősegíti azt. Valójában az egybeesések lehetnek véletlenek is, vagy mindkét jelenséget okozhatja egy harmadik, akár ismeretlen és feltáratlan faktor is. Ok-okozati összefüggés csakis a kiváltó mechanizmusok és összefüggések pontos ismeretében és ellenőrzését követően állapítható meg.”

Például:

“A Föld átlaghőmérséklete az ipari forradalom megindulása óta folyamatosan nőtt, ezért egyértelmű, hogy a globális felmelegedést az ipari termelés növekedése okozza.”

/Forrás: A te érvelési hibád/

Végszóként csak annyit lehet mondani, hogy kozmikus léptékű összefüggések feltételezése előtt nem árt a témában jártasak véleményét is kikérni vagy legalább némi előzetes kutatást végezni…

Az Europa síkságai

Szerző: Gombai Norbert

A NASA Galileo nevű űrszondájának köszönhetően lélegzetelállító felvételeken vizsgálhatjuk a Jupiter negyedik legnagyobb holdjának, a jeges Europának felszíni alakzatait. A tudósok az üstökösök és aszteroidák pályáinak szimulációjával, valamint a hold kráterezettségének elemzésével megállapították, hogy az Europa felszíni képződményei meglehetősen fiatalok, 60-100 millió évesek lehetnek (ellentétben például a Naprendszer más égitestjeinek pl. a Földnek több százmillió, akár több milliárd éves geológiai múltjával). A feltételezhetően jelenleg is aktív folyamatok, mint például az ár-apály hatások miatti gejzír képződések tovább alakítják a hold geológiai arculatát, amely számos érdekes geomorfológiai jellegzetességet mutat.

Forrás: NASA/JPL/ASU
Forrás: NASA/JPL/University of Arizona

A jéghegyek, repedések, jég-kanyonok, sötét foltos területek és lankásabb dombok mellett az Europa egyes területein szinte teljesen sima, látható textúra nélküli és a környező domborzatnál alacsonyabb albedóval rendelkező síkságok figyelhetők meg. Ezek a sima felületű alakzatok láthatóan elfedik a környékbeli domborzati elemeket, így valószínűleg fiatalabbak azoknál. Rendszerint olyan medencékben találhatóak, amelyeket topográfiailag magasabban fekvő vonulatok határolnak.

Forrás: NASA/JPL/University of Arizona

A Galileo szonda 1996 és 2001 között készült felvételeit megvizsgálva négy olyan síkságot azonosítottak, amelyek az alábbi közös jellemzőkkel rendelkeznek:

  • Környezetükhöz képest topográfiailag mélyebben fekvő területeken találhatóak
  • Nagyon sima felület, olykor minden látható domborzati textúra nélkül
  • Néhány kilométeres átmérő, kör-szerű, karéjos forma

A fenti tulajdonságok arra utalhatnak, hogy az Europa belsejéből valamilyen ok miatt kiáramló alacsony viszkozitású folyadék (például folyékony sós víz, krio-magma) töltötte fel a jelenlegi síkságok egykori medencéit.

Forrás: NASA/JPL/DLR

A kutatók további érdekességet fedeztek fel a síkságok 3D-s domborzati modelljeinek (DEM) vizsgálatakor. A “Shade from Shading” technológia segítségével (alakzatok térbeli felépítése a fotón látható árnyékok alapján) láthatóvá vált, hogy egyes, a sima lapályt átszelő jéggerincek a síkság közepe felé mélyülni, megsüllyedni látszanak, ami akár egy felszín alatti krio-vulkáni tározó jelenlétére utalhat. A vizsgálati modellek tehát alátámasztják az Europa sima jégsíkságainak korábbi, feltöltéses keletkezés elméletét. 


Cikk forrása:

Dr. Elodie Lesage, a Paris-Saclay Egyetem Párizsi Földtudományi Laboratóriumának munkatársának cikke alapján.
https://planetarygeomorphology.wordpress.com/2021/07/01/smooth-plains-on-europa/

Bolygós rövidhírek: óriási üstökös érkezett az Oort-felhőből

Szerző: Tóth Imre

A Naprendszer peremvidékéről érkezett nagy méretű üstököst fedeztek fel közel a Neptunusz pályájához közel, mintegy 30 CSE-re a Naptól, amely jelenleg már a naptól 20 CSE-re az Uránusz távolságában jár. A C/2014 UN271 (Bernardinelli-Bernstein) üstökös a Naptól mintegy 10 CSE-re húzódó Szaturnusz pályája felé közeledik és tíz év múlva lesz ott napközelben.

A kis égitestről először 2014. október 20-án készített CCD felvételt a Sötét Energia kutatására irányuló égboltfelmérő program (Dark Energy Survey, DES) Victor M. Blanco elnevezésű 4 méteres teleszkópja Chilében, majd a következő négy évben számos további alkalommal is észlelte. Egyébként Victor Manuel Blanco (1918-2011) puerto-ricoi csillagász, aki extragalaxisok kutatásával foglalkozott és tiszteletére, emlékére nevezték el a CTIO 4 méteres távcsövét.

Mostanáig nem tudtunk a Naprendszernek erről az égitestjéről, mivel a kutatóknak a program 570 megapixeles CCD kamerájának mintegy 80 ezer felvételét kellett feldolgozni, ami becslésük szerint 15-20 millió óra CPU kapacitást igényelt. Pedro Bernardinelli brazil és Gary Bernstein amerikai asztrofizikusok a Pennsylvaniai Egyetemen ezért bukkantak rá csak idén, ezért kellett várni közel hét évet a felfedezés bejelentésére. Ez idő alatt a közeledő égitest a Neptunusz pályájának távolságából az Uránuszig jutott, de a 30 CSE távolság körül felfedezett üstökös sosem volt távolsági rekord a csillagászatban. Az első felvételeken az objektum látszó fényessége mintegy 22 magnitúdó volt és a Sculptor csillagképben mozgott. Akkor is és most is a déli félteke megfigyelői számára kedvező a láthatósága. A kis égitest ideiglenes elnevezése a kisbolygókra jellemző 2014 UN271 lett, mert a 2014-ben készült felvételen a nagy távolság miatt kisbolygónak látszott, még a 4 méteres távcső sem tudott porkómát kimutatni körülette, vagy annak mérete még a felbontás határa alatt volt.

A C/2014 UN271 (Bernardinelli-Bernsteion) üstökös felfedezése után három évvel készített felvétel a CTIO 4 méteres távcsövével készült 2017. októberben. A mintegy 21-22 magnitúdó közötti összfényességű halvány kis égitest a kör közepén látható a déli égbolton levő Phoenix (Főnix) csillagkép csillagai között (forrás: Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA/P. Bernardinelli & G. Bernstein (UPenn)/DESI Legacy Imaging Surveys, T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab) & J. Miller (NSF’s NOIRLab).

A NASA JPL pályaadatai szerint a C/2014 UN271 üstökös nagyon elnyújtott ellipszis pályán kering a nap körül, amelynek excentricitása 0,9996464 ± 0,000070, a pályája félnagytengelye 31 ezer CSE, kb. 6000 CSE bizonytalansággal. Napközelben 10,95 CSE-re halad el központi csillagunktól, ami a Szaturnusz pályájának közepes naptávolsága. Ez a második legnagyobb perihélium-távolság, amit egy Oort-felhőből érkező üstökösnél valaha megállapítottunk.

Napközelségét csak tíz év múlva, 2031. január 23-án éri el. Naptávolban kb. 62 ezer CSE-nél, azaz durván 0,97 fényév (!) távolságban fordul vissza, az Oort-féle üstökösfelhő legkülső peremvidékén. Az Oort-felhő külső határa mintegy 1,5 fényév távolságban van a Naptól, ami a Nap tömegvonzási tartományának határa. Az Oort-felhő peremvidékén a kis égitestek mozgására már erős gravitációs zavaró hatással vannak a közeli csillagok, nagy tömegű csillagközi gáz- és porfelhők, valamint a Tejútrendszer árapály-hatása, így a C/2014 UN271 üstökös is ki volt és ki lesz majd téve ezeknek a hatásoknak. Az alábbi ábra az Oort-felhő keresztmetszetét mutatja egy onnan a Naprendszer belső téréségébe térült üstökös elnyújtott ellipszis pályájával, aminek napközelpontja a nagybolygók naptávolságában (pl. a Szaturnusz pályájánál) van, mint például a C/2014 UN271 üstökös esetében. Ez üstökös a napközelsége után visszafordul majd és visszatér az Oort-felhő peremvidéke felé (más üstökösök például elhagyhatják a Naprendszert vagy túl közel kerülhetnek a Naphoz, ahol a magjuk szétesik, illetve elszublimál).

Az Oort-féle üstökösfelhő keresztmetszete egy onnan érkező ás oda visszatérő, hosszú keringési idejű, dinamikailag új üstökös elnyújtott pályájával. A Naptól mintegy 30-50 CSE között húzódik az Edgewort-Kuiper-öv, a rövid keringési idejű üstökösök forrásvidéke. A naptávolságokat és az Oort-felhő alakját logaritmikus távolság ábrázolás érzékelteti (forrás: Sky and Telescope online, 2021.06.25., NAO).

A C/2014 UN271 ellipszis pályáján mintegy 5,45 (± 1,63) millió év alatt kerüli meg a Napot. Az üstökös pályasíkja csaknem merőleges a földpálya (ekliptika) síkjára, a pályahajlás szöge mintegy 95,6 fok. Ez úgy lehetséges, hogy a pályaszámítók 90 fok feletti szöggel jelölik, ha az égitest retrográd, azaz a Föld keringési irányával ellentétes irányban járja körül a Napot. Már amennyire ezt a közel merőleges pálya esetében értelmezhetjük. Az üstökös már a Naptól távolodóban 2033. augusztusában fogja délről-észak felé metszeni a földpálya síkját.

A C/2014 UN271 (Bernardinelli-Bernstein) üstökös pályája napközeli szakasza. A pályasíkja csaknem merőleges a földpálya síkjára, az ettől való távolságot vetítővonal szakaszok érzékeltetik. A nagybolygók pályái a Neptunuszig jelölve vannak. (NASA/JPL).

A felfedezés június közepi bejelentése után azonnal számos déli teleszkópot irányítottak az új, különleges égitest irányába, hiszen azt három éve nem látta senki. Rosita Kokotanekova (Európai Déli Obszervatórium, ESO) és Tim Lister, valamint kutatótársaik (Las Cumbres Observatory, Kalifornia) és Luca Buzzi (SkyGems Remote Telescope, Namíbia) olasz amatőrcsillagász megfigyelései szerint is a friss felvételeken kómát mutat, vagyis a 2014 UN271 egy aktív üstökös. Ennek alapján gyorsan át is keresztelték, üstökös elnevezést kapott: C/2014 UN271 (Bernardinelli-Bernstein).

Felmerül a kérdés, hogyan képződhet gáz- és porkóma egy Naptól ennyire távoli üstökösnél? Az üstökösök vízjég kigázosodásának megindítására nagy naptávolságban nem elegendő a Nap, hanem a vízjégen kívül már alacsony hőmérsékleten kigázosodása képes szuperillékony szén-monoxid és szén-dioxid okozhatja a kóma kialakulását.

A kezdetben kisbolygónak látszó 2014 UN271 átmérőjére az első közelítő becslések mintegy 100-370 km-t adtak. Miután kiderült, hogy a kis égitestnek kómája van, tehát üstökösről van szó és a sajtóban erre alapozva jelentek meg a “szenzációs” hírek a “gigantikus”, “hatalmas”, „mega” üstökösről. Azonban a kutatók ekkor már hozzátették, hogy a kóma fényének járuléka miatt az üstökösmag kisebb lehet. Amennyiben a magja legfeljebb néhányszor tíz km, ez akkor már a nagyobb ismert üstökösök sorába helyezi a C/2014 UN271-et. A C/2014 UN271 üstökös magjának pontos méretének, közelítő alakjának, tengely körüli forgási idejének és egyéb fizikai tulajdonságainak, összetételének meghatározásához további megfigyelések szükségesek. E sorok írója a HST-vel végzett üstökösmegfigyelési tapasztalatai alapján megjegyzi, hogy az aktív, kómás üstökös magja fényének detektálása nem is olyan egyszerű feladat még a kis aktivitású, rövid keringési idejű (ekliptikai) üstökösöknél sem.

Így nézhet ki egy üstökösmag a Naptól távol a művészi elképzelés szerint. A felszínén a jeges-poros anyag lehetővé teszi, hogy kóma, esetleg csóva alakuljon ki (ESA, G. Bacon).

Emlékeztetőül, az 1997 tavaszán tőlünk szabad szemmel is látványos Hale-Bopp (C/1995 O1) üstökös magjának átmérője mintegy 60-80 km lehetett, ami a modern műszerek korában eddig megfigyelt legnagyobb üstökösmag méretnek felel meg (nagyobb méretű és kigázosodást is mutató kentauroknak és Neptunuszon túli objektumoknak már kötött légköre van, ami nem kóma, ezért nem üstökösök). A C/2014 UN271 sajnos nem lesz olyan látvány a napközelségekor 2031-ben, mint volt a Hale-Bopp 1997-ben.

Fontos kihangsúlyozni, hogy a C/2013 UN271 üstökös nem jelent veszélyt bolygónkra, hiszen csak a Szaturnusz pályájáig jut be, majd napközelsége után visszafordul és az üstökösfelhő peremvidékei felé folytatja útját távolodva a Naptól és bolygónktól is. Egyébként még akkor sem jelentene veszélyt, ha a belső Naprendszerbe kerülne, mert a bolygóközi tér nagyon nagy, és a mintegy 12 472 km közepes átmérőjű Földet bolygónk relatíve kicsi keresztmetszete miatt elenyészően kis eséllyel tudná eltalálni.


Források:

Discovery image of Comet Bernardinelli-Bernstein (annotated) (NOIRLab Public Image 2021.06.25.)
https://noirlab.edu/public/images/noirlab2119b/
Giant Oort Cloud Comet Lights Up in the Outer Solar System (Sky and Telescope online, 2021.06.25.)
https://skyandtelescope.org/astronomy-news/giant-oort-cloud-comet-lights-up-in-the-outer-solar-system/
Don’t panic! But a gigantic comet is currently inbound toward the Sun (Bad Astronomy, 2021.06.22.)
https://www.syfy.com/syfywire/gigantic-comet-is-currently-inbound-toward-the-sun

MPEC 2021-M53: 2014 UN271 (IAU/MPC, 2021.06.19,)
https://minorplanetcenter.net/mpec/K21/K21M53.html

Bolygós rövidhírek: először térképezték fel a helioszféra határát

Szerző: Kovács Gergő

Először térképezték fel a napszél által felfújt hatalmas buborék, a helioszféra határát, az ún. heliopauzát, mely segít a tudósoknak jobban megérteni a napszél és a csillagközi szél kölcsönhatását – számol be a Phys.org.

A Nap által létrehozott kozmikus buborék határa, a heliopauza. Forrás: NASA/IBEX/Adler Planetarium

“A fizikai modellek hosszú évek óta elméletbe foglalták már ezt.” – fogalmazott Dan Reisenfeld, a Los Alamos Nemzeti Laboratórium tudósa, és az erről szóló, az Astrophysical Journal folyóiratba publikált tanulmány elsőszerzője. “De most először voltunk képesek ezt megmérni ezt és ebből egy háromdimenziós térképet készíteni.”

A helioszféra egy, a napszél által felfújt buborék, mely főleg protonokból, elektronokból és alfa-részecskékből (két proton+két neutron, azaz egy hélium-atommag – a szerk.) áll, mely megvédi Földünket a káros kozmikus sugárzástól. Reisenfeld és csapata a NASA Earth-orbiting Interstellar Boundary Explorer (IBEX) műholdjának adatait használta, mely műhold képes detektálni a helioszféra határvidékéről érkező részecskéket. Ezen a területen a napszél által felfújt buborék a csillagközi széllel ütközve össze hozta létre a heliopauzát.

“Ehhez olyan módszert használtunk, ami a denevér hangradarjára hasonlít. Ahogy az állat repülés közben minden irányba kibocsát jeleket, a beérkező hangokból létrehozza környezete mentális térképét, úgy használtuk mi a napszelet, hogy minden irányba feltérképezzük a helioszférát.” – mondja Reisenfield.

A méréshez olyan, semleges töltésű atomokat használtak, melyek a kozmikus szél és a Napból érkező részecskék összeütközéséből keletkeztek. Ezen részecskék száma a heliopauzának ütköző napszél-részecskék intenzitásától függ. Ez a napszél-intenzitás térben változó erősségű, megalkotva egy egyedi 3D-s formát. E térkép megmutatta, hogy a helioszféra határának minimális távolsága a Naptól 120 Csillagászati Egység (Nap-Föld távolság, ~150 millió km) távolságra van, míg az ezzel átellenes irányba 350 Csillagászati Egységig nyúlik el ez a határ, mely távolság egyben e mérési technika határa is. Összehasonlításképp, a Neptunusz pályájának átmérője 60 Csillagászati Egység.

Bolygós rövidhírek: vulkánok lehetnek az Europa óceánja alatt

Szerző: Kovács Gergő

A Geophysical Research Letters-ben megjelent friss tanulmány szerint a Jupiter Europa holdja belsejében elégséges a hő tenger alatti vulkánok működtetéséhez, számol be a Phys.org. Egy új kutatás és számítógépes szimulációk szerint a hold jeges felszíne tekintélyes méretű óceánt rejteget, mely alatt a sziklás köpeny elég forró lehet ahhoz, hogy olvadt állapotban legyen. A modell szerint a legtöbb hő és így a legaktívabb vulkanizmus a hold pólusai közelében lehet.

A 2024-ben induló, az Europahoz 2030-ban megérkező Clipper. Forrás: NASA/JPL-Caltech

A NASA 2024-ben induló, és a holdat 2030-ban elérő Clipper űrszondája több alkalommal is igen közel fog elszáguldani az Europa mellett, hogy részletesen feltérképezze annak felszínét és megvizsgálja a hold ritka légkörét is. Ahogy az űrszonda feltérképezi a holdat, annak felszínét, gravitációs és mágneses mezejét, illetve az ezekben jelentkező anomáliákat, megerősítést kaphatunk a vízalatti vulkanizmus létéről.

Az Europa jégpáncélja alatt folyékony vízréteg, egy olvadt szilikátköpeny és egy vasmag található; az új kutatás segít megérteni, hogyan képes a belső hőtermelés működésben tartani a tenger alatti vulkánokat. Forrás: NASA/JPL-Caltech/Michael Carroll

Bár a Clipper nem egy életnyomok után kutató misszió, segít jobban megismerni az Europa fizikai felépítését, így képes alátámasztani azt a feltevést, hogy az égitest képes lehet-e az élet kialakulásához szükséges feltételeket biztosítani. Továbbá segít jobban megértetni az élet kialakulását saját bolygónkon, valamint útmutatást adni az életnyomok más égitesteken történő kereséséhez.

Tapintható Univerzum: a 0. program

– avagy csillagászati bemutató látássérülteknek –

Szerző: Ivanics Ferenc, Bakonyi Csillagászati Egyesület

Amikor először felmerült bennünk, hogy látássérülteknek tartsunk csillagászati ismeretterjesztést, a legtöbben azt mondták, hogy ez lehetetlen. Pedig külföldön, nyugaton már találtunk hasonlóra példát. Tudomásunk szerint mi leszünk az elsők, akik hasonlóba kezdenek Magyarországon. Miután azonban elkészültünk a programmal, még nem tudtuk, hogy miként is fog ez működni.

Ezért (is) vettük fel a kapcsolatot a Vakok és Gyengénlátók Veszprém Megyei Egyesületének vezetőjével, Csehné Huszics Mártával, hogy segítsen a program tesztelésében. Ezáltal sikerült egy baráti találkozót szerveznünk a két szervezet között. Május 29-én találkoztunk a veszprémi központjukban. Elsődlegesen elmondható, hogy mindkét egyesület tagjai nagy izgalommal várták a 0. programnak nevezett találkozót.

Mi főként arra voltunk kíváncsiak, hogy valóban megvalósítható-e a program, vagyis sikerül-e átadni a látássérülteknek az élményt? Nos, bátran kijelenthetjük, hogy igen! Azzal, hogy végigtapogatják a maketteket, a felszínformákat vagy olyan folyamatokat, mint egy becsapódásos kráter képződése, illetve meghallgatják a hozzájuk tartozó magyarázó szövegeket, abszolút képesek megérteni azt, ami előttük van, pedig egy-egy folyamat sokszor még a látó ember számára is bonyolult vagy hihetetlen.

Az élmény, amit megtapasztaltunk, mindkét fél számára fantasztikus volt. A látássérültek igazán hálásak voltak nekünk, amiért egy olyan világot tettünk számukra elérhetővé, tapinthatóvá, mely – elmondásuk szerint – eddig teljesen kiesett számukra. Azonban nekünk is ki kell fejeznünk a hálánkat, ugyanis mi is rengeteg élményt és tapasztalatot szereztünk általuk. Tulajdonképpen elmondható, hogy mindkét fél „profitál” ebből a programból. Kölcsönösen adtunk egymásnak, s általuk mi is gazdagabbá váltunk. Így végül valamennyien sok újdonságot „vittünk haza”.

Egyesületünk számára ez volt az egyik legszebb élmény. A látássérültek hihetetlen partnerek, emellett fantasztikus nyitottsággal élik életüket a világ dolgaira. Mivel mindkét fél segített a másiknak, ezért ez egy közös projekt volt, melyben együtt dolgoztunk, s tudjuk, érezzük, így lesz ez a jövőben is. E közös munka pedig számunkra is szemléletformáló erőként hatott. Nekünk ugyanis eddig szinte semmilyen tapasztaltunk nem volt a látássérültekkel. Így meg kellett tanulnunk boldogulni az ő világukban. Szerencsére azonban nagyon segítőkészek voltak, így tagjaink hamar megtanulták kezelni a helyzetet.

Miközben kölcsönösen segítettük egymást, számunkra hatalmas élményt jelentett bevezetni egy látássérültet a csillagászat világába. Ezen élmény hatására úgy döntöttünk, hogy egy újabb állomással egészítjük ki a programot. Mivel e projekt részben látóknak is készült, úgy döntöttünk, hogy egy érzékenyítés keretében bevezetjük őket a vakok világába, méghozzá játékos formában.

Ehhez egy úgynevezett mystery boxot készítünk. Ez egy olyan doboz, melybe nem lehet belátni semelyik irányból, csak egy fekete szövettel fedett nyílás van rajta, melyen a kezeket lehet bedugni. Előzetesen elhelyezünk benne egy makettet, majd megkérjük a látó személyt, hogy pusztán a tapintás alapján próbálja meg kitalálni, melyik makettet tartja a kezében. Annyiban puskázhat, hogy lát maga előtt egy kártyát, melyen négy hasonló alakzat van (például kráterek) és ebből kell kitalálnia, hogy melyiket tapintja.

Mindezzel hazánkban egy olyan egyedi programot szeretnénk létrehozni, mely vakok és látók számára is egyenlő élményt nyújt, ezáltal közelebb hozva egymáshoz mindkét felet. Miközben együtt dolgoztunk, folyamatosan elcsodálkozunk azon, hogy a látássérülteknek mennyire fantasztikus a háttértudásuk és a tájékozottságuk. Mindabból, amit átéltünk, ki merjük jelenteni, hogy ez egy „gyönyörű barátság kezdete lehet”.

A 0. programon nagyon sokat tanultunk és rengeteg tanácsot kaptunk. Ezeket mind hasznosítjuk a projekt folytatásában. Már most elkezdjük a módosításokat az eszközparkon, illetve elindítjuk a további programok szervezését. Zárásként elmondhatjuk, hogy eddig ez az egyik legnehezebb, mégis legtöbb élményt adó programunk. Nehéz, mert rengeteg odafigyelést és új magatartásformák kiépítését teszi szükségessé, hiszen látássérültekkel dolgozunk. Oda kell figyelni a mozgásunkra, a beszédünkre stb., ami hihetetlen módon kifárasztja az embert. Ezt a fáradtságot mégis pozitívan éljük meg, hiszen a program közben a legnagyobb élményt nyújtja számunkra. Ahogy együtt örülünk a látássérültekkel, mikor figyeljük, ahogy érintés útján megértik a csillagászat világát, s akkor tudjuk, hogy ez a program igenis működőképes. S aztán halljuk a rengeteg hálát, a köszönetet, a szívből jövő öleléseket…És ezek azok a dolgok, melyek miatt e projekt vált számunkra – az összes eddigi közül – a legkedvesebbé.

Most már tudjuk, hogy megérte a sok befektetett munka, és igenis lehetséges ez a program. Úgy véljük, hogy képesek vagyunk egy hidat létrehozni e két világ között, s így egy új univerzum nyílik meg mindkét fél számára. A látássérültekkel kialakított különleges kapcsolat miatt pedig azt érezzük, hogy minden eddigi formabontó programunk közül ez a legemberibb.

A 16 Psyche planetológiája

Szerző: Balogh Gábor

A Psyche kisbolygót 1852. március 17-én fedezte fel Annibale de Gasparis Nápolyban. Psyche-ről (Ψυχή), az emberi lelket megszemélyesítő mondabeli királylányról kapta a nevét. Átmérője 278×232× 164 km, a 12 legnagyobb tömegű kisbolygó egyike, legnagyobb az M típusúak, a fémes kisbolygók között.

Fantáziarajz a Psyche kisbolygóról. Forrás: Maxar/ASU/P.Rubin/NASA/JPL-Caltech

Ami egyedülállóvá teszi ezt az égitestet, az a keletkezése utáni története, hiszen egy olyan, erdetileg mintegy 500 kilométer átmérőjű, a Vestához hasonló protoplanétáról, törpebolygóról van szó, mely ütközések során elvesztette kérgét és köpenyét, hátrahagyva a protoplanéta lehámozott vasmagját (1). Tömege 2.41×10^19 kg, sűrűsége csaknem 4 g/cm3 (2).

A Psyche kisbolygó a Very Large Telescope felvételén. Forrás: ESO/LAM/Wikipedia; CC BY 4.0

Földi elemzése azt mutatja, hogy alakja szabálytalan. Hatalmas tömeghiány van az egyenlítő közelében, mely a Vesta Rhestailvia kráterére emlékeztet. A déli pólus közelében két további kisebb (50–70 km átmérőjű) kráterszerű mélyedés is található (3).

Hatalmas tömegű vasról és egyéb fémekről van szó tehát. Az amerikai Forbes üzleti magazin 1×10^15 dollárra becsüli az értékét (4). Természetesen ez az érték a hipotetikus, de jól jelzi esetleges jövőbeli anyagi értékét, amennyiben ez az ásványkincs kiaknázható lesz. Tudományos szempontból is rendkívüli fontossággal bír. A NASA Psyche küldetése 2022-re tervezett, kilövése egy SpaceX Falcon Heavy rakétával fog történni, várhatóan 2026 januárjában érkezik majd meg a kisbolygóhoz (5).

Jelenlegi megfigyelések azt mutatják, hogy a Psyche fém-piroxén összetételű. Ez, és mért sűrűsége egyaránt összhangban van a mezosziderit meteoritokkal (≈ 4,25 g/cm3) és a Steinbach meteoritokkal (≈ 4,1 g/cm3) (6, 7). Felszínének mintegy 90%-a fémes (vas és nikkel), 10%-a szilikátos kőzet, mely 6% ortopiroxént tartalmaz (8, 9).

A Bondoc meteorit. Forrás: Wikipedia

További érdekesség, hogy a NASA Mauna Kea-i NASA IRTF teleszkópja 2016 októberében hidroxil-ionokat talált az aszteroida felszínén, melyek vízjégre utalhatnak. Mivel úgy tudjuk, hogy a Psyche száraz körülmények között képződött, víz jelenléte nélkül, a hidroxil-ionok bizonyára jeges planetezimálok, üstökösök segítségével érhették el a Psychét (10, 11)

A Steinbach meteorit. Forrás: Wikipedia; CC BY-SA 4.0

Kialakulása és további sorsára vonatkozó hipotézisek szerint tehát az eredeti, 500 kilométer átmérőjű protoplanétát ért, legalább három, hatalmas impakt esemény lecsupaszította a kérgét és a köpenyt. A megmaradt fémes magot vékony szilikátos mezosziderit réteg borítja. Planetológiailag ebben az esetben a Psyche analóg lenne a Merkúrral, mely szintén elvesztette külső rétegeit (12).

A mezoszideritek vitathatatlanul a differenciált meteoritok egyik legrejtélyesebb csoportja. A mezoszideritek nagyjából azonos arányú Fe-Ni fémből és szilikátokból álló breccsák. A pallazitokkal ellentétben, ahol a szilikátok mély köpenyi eredetűek, a mezoszideritekben lévő szilikátok bazaltos, gabbrós és piroxenites összetételűek (13), hasonlóak a Vestai eukritokhoz. A mezoszideritek fémösszetétele egyforma, ami arra utal, hogy a fém olvadt volt, amikor a szilikátokkal keveredett (14). Számos innovatív modell megpróbálta megmagyarázni a kéreganyag és a protoplanéta magjának fémes keverékét (15), ezek a modellek olvadt planetezimálok nagy, differenciált aszteroidák felszínére gyakorolt hatását kutatják (16, 17) kis sebességű impakt esemény keretében.

A mezoszideritek másik szokatlan jellemzője a nagyon lassú metallográfiai hűlési idő (18, 19). Ez arra utal, hogy a mezosziderit szülőégitestnek nagynak kellett lennie. A mezoszideritek fiatal 39Ar-40Ar kora (3,95 milliárd év) szintén ezt igazolja (20), valamint a tény, hogy sok mezosziderit esetében tapasztalták metamorfizmus jeleit. Ez a változás elsősorban hő és nyomás hatására következik be.

Sok jel arra mutat tehát, hogy a mezoszideritek szülőégiteste a Psyche kisbolygó (25) – ez azonban további kérdéseket vet fel. Hol van a hatalmas impakt esemény által létrehozott Psyche kisbolygócsalád, miként ezt a Vesta esetében tapasztaljuk? (21, 22). A mezoszideritek oxigén-izotópos elemzései azt mutatják, hogy ezek a Vestai eredetű HED meteoritokkal (Howardit-Eukrit-Diogenit) kapcsolatosak, vagy esetleg egy olyan másik szülőégitestről, mely a Vesta környezetében alakult ki a szoláris ködben (23, 24). A Psyche kisbolygó jelenlegi átlagos naptávolsága 2,921 CSE, a Vestáé pedig 2,362 CSE.

A Dhofar 007 eukrit polimikt breccsa (26) durvaszemcsés gabbrós klasztere például arról tanúskodik, hogy eredetileg kumulált kőzet volt, amely az anyaégitest kérgében kristályosodtak ki, tehát kétlépcsős utókristályosodási folyamaton ment át: gyors lehűlés magas hőmérsékleten és lassú lehűlés alacsonyabb hőmérsékleten. Ez utóbbi a mezoszideritekhez hasonló ütem. Ez a kétlépcsős hőtörténet és a mezoszideritek fémes részeihez hasonló sziderofil elemek relatív bősége arra utalhat, hogy a Dhofar 007 meteorit egy mezosziderit-zárvány (27).

Sok a fehér folt tehát a Psyche kialakulása és későbbi fejlődése, valamint a mezoszideritek eredete körül. A NASA 2022-es küldetése remélhetőleg a kérdések egy részére választ fog adni, de erre 2026-ig, a szonda megérkezéséig várnunk kell.


Források:

  1. Elkins-Tanton, L.T.; Asphaug, E.; Bell, J.; Bercovici, D.; Bills, B.G.; Binzel, Richard P.; et al. (March 2014): “Journey to a Metal World: Concept for a Discovery Mission to Psyche”, https://www.hou.usra.edu/meetings/lpsc2014/pdf/1253.pdf
  2. Viikinkoski, M.; Vernazza, P.; Hanuš, J.; Le Coroller, H.; Tazhenova, K.; Carry, B.; et al. (6 November 2018). “(16) Psyche: A mesosiderite-like asteroid?” https://www.aanda.org/articles/aa/pdf/2018/11/aa34091-18.pdf
  3. Hanuš, J.; Viikinkoski, M.; Marchis, F.; Ďurech, J.; Kaasalainen, M.; Delbo’, M.; Herald, D.; Frappa, E.; Hayamizu, T.; Kerr, S.; Preston, S.; Timerson, B.; Dunham, D.; Talbot, J. (2017). “Volumes and bulk densities of forty asteroids from ADAM shape modeling”, https://www.aanda.org/articles/aa/pdf/2017/05/aa29956-16.pdf
  4. NASA Will Reach Unique Metal Asteroid Worth $10,000 Quadrillion Four Years Early, https://www.forbes.com/sites/bridaineparnell/2017/05/26/nasa-psyche-mission-fast-tracked/?sh=3efc908d4ae8
  5. The Psyche mission, https://www.jpl.nasa.gov/missions/psyche
  6. Bondoc meteorite, https://www.lpi.usra.edu/meteor/metbull.php?code=5103
  7. Steinbach meteorite, https://www.lpi.usra.edu/meteor/metbull.php?code=23722
  8. Mission to a Metallic World: A Discovery Proposal to Fly to the Asteroid Psyche. Future Planetary Exploration
  9. Callahan, Jason (30 March 2015). “Discovery lives”, https://www.thespacereview.com/article/2722/1
  10. Atkinson, Nancy. “Pure Metal Asteroid Has Mysterious Water Deposits”. Universe Today, https://www.universetoday.com/131738/pure-metal-asteroid-found-with-mysterious-water-deposits/
  11. Takir, Driss; Reddy, Vishnu; Sanchez, Juan A.; Shepard, Michael K.; Emery, Joshua P. (2016). “Detection of water and/or hydroxil on asteroid (16) Psyche”. The Astronomical Journal. 153 (1): 31., https://arxiv.org/abs/1610.00802
  12. Asphaug, E.; Reufer, A. (2014). “Mercury and other iron-rich planetary bodies as relics of inefficient accretion”. Nature Geoscience. 7 (8): 564–568., https://ui.adsabs.harvard.edu/abs/2014NatGe…7..564A/abstract
  13. Assessment of the Mesosiderite-Diogenite Connection and an Impact Model for the Genesis of Mesosiderites, https://www.hou.usra.edu/meetings/lpsc2014/pdf/2554.pdf
  14. Compositions of large metal nodules in mesosiderites: Links to iron meteorite group IIIAB and the origin of mesosiderite subgroups, https://www.sciencedirect.com/science/article/abs/pii/0016703790901347
  15. Impact versus internal origins for mesosiderites, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB088iS01p0B257
  16. Evolutionary History of the Mesosiderite Asteroid: A Chronologic and Petrologic Synthesis, https://www.sciencedirect.com/science/article/abs/pii/S0019103583710183
  17. Formation of mesosiderites by low-velocity impacts as a natural consequence of planet formation, https://www.nature.com/articles/318168a0
  18. Thermal and shock history of mesosiderites and their large parent asteroid, https://www.sciencedirect.com/science/article/abs/pii/001670379600110X
  19. The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites, https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1945-5100.2001.tb01815.x
  20. Bogard and Garrison, (1998): 39Ar-40Ar ages and thermal history of mesosiderites. Geochim. Cosmochim. Acta, 62, 1459-1468.
  21. Davis, D. R.; Farinella, Paolo & Francesco, M. (1999). “The Missing Psyche Family: Collisionally Eroded or Never Formed?”. Icarus. 137 (1): 140., https://ui.adsabs.harvard.edu/abs/1999Icar..137..140D/abstract
  22. Fugitives from the Vesta family, https://ui.adsabs.harvard.edu/abs/2008Icar..193…85N/abstract
  23. Chronological Evidence for Mesosiderite Formation on Vesta, https://www.hou.usra.edu/meetings/metsoc2019/pdf/6242.pdf
  24. New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites, http://adsabs.harvard.edu/pdf/1991AMR…..4..263K
  25. 16 Psyche: A mesosiderite-like asteroid? https://www.aanda.org/articles/aa/full_html/2018/11/aa34091-18/aa34091-18.html
  26. Dhofar 007, https://www.lpi.usra.edu/meteor/metbull.php?code=6706
  27. Yamaguchi, A., Setoyanagi, T., & Ebihara, M. (2006). An anomalous eucrite, Dhofar 007, and a possible genetic relationship with mesosiderites. Meteoritics & Planetary Science, 41(6), 863-874.

Megfogható világok

Szerző: Ivanics Ferenc, Bakonyi Csillagászati Egyesület

Egyesületünk mindig is arra törekedett, hogy bárki számára közelebb hozza, élményszerűvé és kézzelfoghatóvá tegye a csillagászat és az űrkutatás világát. Már-már vesszőparipánkká vált, hogy a tudományos ismeretterjesztés interaktív formában mindenkinek elérhetővé váljon. Mégis, vannak olyan emberek, akik esetén elsőre lehetetlennek tűnik mindez. Ők a látássérültek. A mi fejünkben azonban már három évvel ezelőtt megfogant egy gondolat: szerettük volna valamiképpen az ő számukra is elérhetővé tenni az Univerzumot. Mind a mai napig, ha valaki a csillagászati ismeretterjesztésre gondol, akkor általában egy távcsöves bemutató képe villan fel lelki szemei előtt. Egy ilyen bemutató azonban, ahol elsődlegesen a szemünket használjuk, egy vak ember számára nem releváns. Egyesületünk már az első pillanattól kezdve azon volt, hogy a hagyományos, távcsöves ismeretterjesztés mellett, azzal egyenrangú programokat dolgozzon ki. Programjainknak már indulásunktól kezdve részei a kézzelfogható makettek, modellek és kőzetek. Ebből kiindulva hamar meg is született az ötlet: kézzelfoghatóvá kell tenni a világűrt, hiszen a látássérültek leginkább a kezüket, a tapintást használják tájékozódásra. Fő eszközünk pedig a nemrég már hazánkban is elterjedt és az átlagember számára elérhetővé vált 3D nyomtatás lett. Azonban az ötlet hosszú éveken keresztül csak álom maradt, mivel más programokra koncentráltunk. Tavaly, az év második felében azonban végre elkezdtük ennek az új és formabontó, részben kísérleti programnak a megvalósítását.

Mivel egy vidéki, nonprofit egyesület vagyunk minimális erőforrásokkal, először is támogatókra, szponzorokra volt szükség, hogy álmunk valóra váljon. Szerencsére nem kellett messzire mennünk az ajkai Schwa-Medico, illetve a budapesti Thermo Épgép Kft. egyből projektünk mellé álltak anyagi támogatásukkal. Ezután 2020 decemberében végre belevághattunk a program gyakorlati megvalósításába, ami korántsem volt olyan könnyű, mint azt elsőre gondoltuk.

A fő lépés természetesen a tapintható makettek és modellek legyártása volt. Ennek első elemeként kidolgoztunk egy tematikát, ami részletesen bemutatja saját bolygórendszerünket. Jelenlegi programunkban a Naprendszer égitesteit szándékozunk bemutatni. Végül 46 db égitestet választottunk ki nyomtatásra, azok esetenként több érdekes felszíni formájával (ismertebb kráterek, vulkánok, kanyonok, stb.) egyetemben. Így a 3D nyomtatással előállított modellek száma összesen 77 darab lett. A 3D nyomtatás során gyártott modelleket az interneten ingyenesen elérhető adatbázisokból és a NASA honlapjáról töltöttük le. A 3D nyomtatott elemek mellé 9 darab egyedileg készített modell került. Az összesen 86 modell mellé 3 darab valódi meteoritot és egy becsapódások során képződő úgynevezett tektitet is adtunk. Ezen égi kövek már régóta részét képezik bemutatóinknak, ezért semmiképp sem maradhattak ki. A bemutatóhoz egyrészt egy kőmeteoritot választottunk, másrészt két vasmeteoritot, így a főbb típusok képviselve vannak.

A vasmeteoritok közül az egyik az argentin Campo del Cielo egy 3,5 kg-os példánya. A másik az amerikai Canyon Diablo. Utóbbi azért került a gyűjteménybe, mert 3D nyomtatással elkészíttettük mellé a főtömeg által vájt arizonai Barringer-krátert. A vasmeteoritoknak nemcsak a tapintásuk vagy a súlyuk, hanem a szaguk is érdekes, ezért is kerültek bele a tematikába. Egy negyedik kőzet is része a programnak, egy metamorf kőzet, azon belül egy tektit. Rá a kráterképződés bemutatásánál „lesz szükség”. Itt pedig meg kell említenünk, hogy nem minden modellünk született meg 3D nyomtatásból. Egyes makettek egyedi módon, kézzel készültek, ezeket mind Surányi Zoltán tagtársunk állította elő. Két üstökös-modell és az aszteroida-becsapódás folyamatát bemutató hat tábla került ki a kezei közül. Ezek mellett évekkel ezelőtt ajándékba kaptunk egy gittből készült holdfelszínt. Ez azt a területet ábrázolja az Esők Tengerén, ahová a Luna-2 űreszköz 1959-ben becsapódott, vagyis itt érte el először ember alkotta tárgy egy idegen égitest felszínét. A holdfelszín-makettet, mely az egyik legnagyobb a gyűjteményünkben, Vértes Ernő amatőrcsillagász készítette 1974-ben az egykori veszprémi csillagászati szakkör részére. A modell tehát csaknem ötven éves, készítője nem is sejthette, hogy egyszer egy ilyen, az országban egyedi és első programban kap majd helyet. A makettet Surányi Zoltán tagunk újította fel, egy hónapig dolgozva rajta.

A többi makett viszont már 3D nyomtatással készült. Bár egyesületünk is rendelkezik egy ilyen speciális nyomtatóval, egyértelmű volt, hogy az kevés, ezért más segítség után kellett néznünk. Szerencsére az ismerősi körben több embert is találtunk, aki rendelkezik 3D nyomtatóval, például Lisztmaier Gábor. Ők a kisebb maketteket készítették el. Voltak azonban nagyméretű illetve olyan makettek, melyek sok részből álltak, így „házilag” nem lehet őket előállítani. Emellett hamar felmerültek problémák az otthoni nyomtatáskor, mind a magunk, mind a többiek részéről: a nyomatók a fokozott igénybevétel miatt többször felmondták a szolgálatot, emiatt csúszott is a program, bár erre fel voltunk készülve. Szerencsére a nagyobb makettek előállításában segítséget kaptunk a VARINEX Zrt-től, akik ingyen, minden munkatársukat bevonva dolgoztak makettjeinken. Így ők is szponzorjainkká váltak. Az ő kezük alól került ki egy méretarányos naprendszer-modell, egy nagyméretű Tycho-kráter és egy vetületi földtérkép, mely több mint harminc négyzetlapból áll (a földtérkép összeszerelve 1,4 m x 0,7 m).

Ezeket a nyomtatott modelleket aztán mind le kellett festeni. A munka oroszlánrészét Ivanics-Rieger Klaudia végezte. Joggal merülhet fel, hogy miért festjük le a modelleket, ha egyszer vakok számára készültek? Ennek több oka is van. Egyrészt, más programjainkban is szeretnénk felhasználni őket. Másrészt a festés információkkal lát el minket az adott felszínen kitapintható objektumokról. Harmadrészt látók is részt vesznek majd a Tapintható Univerzum programján. Negyedszer pedig a vakok és gyengénlátók közé a színvakok is beletartoznak, nekik pedig, még ha nem is ismerik fel a pontos színeket, azok fontosak a kontrasztok érzékeléshez. Néhány objektum lefestése egyszerű volt: a Hold vagy a Mars esetén elég volt egy-egy adott színnel, szürkével vagy vörössel dolgozni. De egyes bolygók, például a Jupiter már nem volt ilyen könnyű, a vetületi földtérkép festése pedig csaknem egy hetet vett igénybe.

A festés után a makettek fakeretet, illetve állványt kaptak, ezeket ismét Surányi Zoltán készítette el. Ezekre a keretekre kerülnek majd az információs panelek.

A sok makettet természetesen tárolni és szállítani kell valamiben. Ebben másik egyesületi tagunktól, Vágó Gábortól kaptunk segítséget, aki beszerezte a tárolóeszközöket, illetve biztosította a makettek védőcsomagolását. Közben rengeteget gondolkodtunk azon, hogy a program konkrétan hogyan fog megvalósulni. Végül abban egyeztünk meg, hogy a legjobb egy hanganyag összeállítása lesz. Ehhez először írtunk hetvenhét darab rövid, általában egy perc alatt elmondható szócikket az adott makettről, a legfontosabb információkkal. Ezeket a szócikkeket egyesületi tagunk, Nagy Richárd rögzítette hanganyag formájában. Rengeteg munka volt a csaknem nyolcvan szócikk felmondása, amit néha többször is meg kellett tenni, mire végre elnyerték végső formájukat. A hanganyag a honlapunkról lesz elérhető kétféle módon: QR-kód illetve úgynevezett NFC chip formájában, melyeket okostelefon segítségével lehet majd aktiválni, meghallgatni. A chipek beszerzését illetve a szükséges informatikai hátteret egyesületünk informatikusa, Csánitz László biztosította.

A program azonban nem jöhetett volna létre a Vakok és Gyengénlátók Veszprém Megyei Egyesülete nélkül. Először is rengeteg ötletet és jó tanácsot kaptunk a program megvalósításával kapcsolatban az egyesület elnökétől, Csehné Huszics Mártától. Emellett szükségünk volt Braille-írással nyomtatott elnevezésekre is, az összes, tehát mind a 90 modellhez. Ezeket Lebcelterné Veiland Orsolya készítette el számunkra. Ezek a szövegek a chipekkel és QR-kódokkal együtt a makettek keretein, tartóin kapnak majd helyet.

A továbbiakban hosszú és folyamatos együttműködést tervezünk a Vakok és Gyengénlátók Veszprém Megyei Egyesületével. A programot először náluk mutatjuk majd be, de ez inkább lesz egy baráti találkozó és egy kísérleti jellegű teszt. Miután pedig tovább finomítottunk rajta, reméljük, hogy rengeteg helyre eljuthatunk vele, hogy elvigyük a tapintható Univerzumot vakoknak és látóknak egyaránt.

Több mint fél évet töltöttünk e programunk előkészítésével. Egyesületünk minden tagja hozzátett valamit azért, hogy létrejöhessen valami igazán érdekes. A munka során felmerült sok-sok nehézség mellett hihetetlen erőt adott számunkra azoknak a cégeknek és magánembereknek az önzetlen támogatása, akik velünk együtt egy újfajta élményt szeretnének ajándékozni azoknak az embertársainknak, akiknek, nincs lehetőségük megszemlélni a kozmosz csodáit. Az új interaktív programunk még nem debütált ugyan, azonban a munkánkat segítő szakemberek (mondhatom, hogy a barátaink), cégek és munkatársaik elsöprő lelkesedésén keresztül már most sok örömet hozott számunkra. Majdnem két tucat ember, három cég, ismerve vagy ismeretlenül, de azért dolgozott össze, hogy az eltérő érzékeléssel élő társaink mosolyát vagy áhítatát figyelve tanúi legyünk annak, hogy ezek a távoli világok miképp rajzolódnak ki érzékelésük vásznán…

Ez lesz az a pont, amikor munkánk elnyeri valódi értelmét!
Köszönjük támogatóinknak, hogy hittek a projekt céljában és értékében!