42 kicsi aszteroida

Új felvételek kerültek napvilágra a Mars és Jupiter közötti kisbolygóövezet 42 legnagyobb aszteroidájáról – számol be a sciencealert.com. Egy csillagászokból álló nemzetközi csapat az ESO VLT (Very Large Telescope – Nagyon Nagy Távcső) nevű óriásteleszkópja segítségével vadonatúj képeket készített ezen égitestekről.

“Idáig csupán három nagy, fő kisbolygóövezet-beli égitestről voltak nagy felbontású képeink, a Ceresről, a Vestáról és a Lutetiáról, melyeket a NASA és ESA Dawn és Rosetta missziók tártak fel számunkra.” – mondta Pierre Vernazza csillagász – “Megfigyeléseink jóval több égitestről készítettek éles képeket, összesen 42-ről.”

A 42 kisbolygó (teljes felbontásban elérhető itt). Forrás: (ESO/M. Kornmesser/Vernazza et al./MISTRAL algorithm/ONERA/CNRS)

Ez az új felmérés egy sokkal átfogóbb munka, célja az egyes égitestek kollektív tulajdonságainak vizsgálata, az egyedi jellemzőik helyett. Ezekhez új, háromdimenziós adatokat is felhasználnak, melyek segítenek feltárni ezen égitestek valódi alakját, illetve tömegét. Általánosságban elmondható, hogy ezek a kisbolygók két morfológiai kategóriába sorolhatók: egyik a kerekebb, másik pedig a hosszúkás égitesteket foglalja magába. Utóbbira a kutyacsont-alakú Kleopatra kisbolygó a legjobb példa. Az új adatok azt is feltárták, hogy az aszteroida két holdja, az Alexhelios és Cleoselene a Kleopatráról kilökődött anyagból születtek.

Érdekes, hogy ezek a kategóriák nincsenek összefüggésben az átmérővel. A 940 kilométeres Ceres egy megközelítőleg gömb alakú égitest, akárcsak a 434 kilométeres, törpebolygó-jelölt Hygeia; míg az 520 kilométeres Vesta és a 274 kilométeres Sylvia már szabálytalanabb alakú. A 146 kilométeres Flora és a 144 kilométeres Adeona már szintén közelebb állnak a gömbhöz.

Az új háromdimenziós adatok határozottabb kereteket biztosítottak a tudósok számára az égitestek térfogatának kiszámításához. Ha az égitest térfogata és tömege is ismert, kiszámíthatóvá válik a sűrűsége és az összetétele. Földünk sűrűsége átlagosan 5,51 g/cm3. A legkisebb sűrűségű aszteroida sűrűsége 1,3 g/cm3 (mely minden bizonnyal egy porózus, szenes összetételű kisbolygó), míg a legsűrűbbeké, a Psyche és a Kalliope, 3,9 g/cm3 és 4,4 g/cm3 (mely kő-vas összetételt sugall).

Ezek a mérések (is) azt sugallják, hogy a kisbolygóövezet különböző összetételű, és így különböző eredetű égitestjei merőben más helyekről származnak, mint jelenlegi tartózkodási helyük. “A megfigyeléseink egy jelentős bizonyítékot nyújtanak a kisbolygók létrejöttük utáni migrációira.” – véli Josef Hanuš, a csehországi Károly Egyetem munkatársa.

Ismerős idegenek – avagy Naprendszerünk a Science Fiction univerzumában – V. rész

Szerző: Ivanics-Rieger Klaudia

Bevezető

Számtalan lehetőségünk van arra, hogy megismerjük a Naprendszerünket. Elég csak kinyitnunk egy tudományos könyvet, átkapcsolni a tévét egy ismeretterjesztő csatornára vagy követni egy ismeretterjesztő oldalt az interneten, esetleg ilyen ismertető videókat nézni. A következő cikksorozatban azonban a Naprendszert egy új oldaláról ismerhetjük meg. A sorozat a tudományos fikció világába kalauzol el minket. Égitestről égitestre haladva ismerhetjük meg, hogy az adott objektum miként jelenik meg a sci-fikben, a könyvek lapjain csak úgy, mint a mozivásznon. Elsősorban azokra a művekre koncentráltam, amik a hazai science-fiction rajongók körében jól ismertek. Akik már látták, olvasták őket, azok számára nyilván ismerős a terep, akik még nem, azoknak remélem, sikerül kedvet csinálni. Utazásunk során belülről kifelé haladunk, a belső bolygókkal kezdjük és a Naprendszer határán fejezzük be, s közben felfedezzük ismerős égitestjeink idegen oldalát.

A Naprendszerről szóló korai szakirodalom a XVII. századig visszanyúló tudományos spekulációk nyomán azt feltételezte, hogy minden bolygó saját őshonos életformának ad otthont, emellett gyakran feltételezik, hogy lakói antropomorfok. Ezeket az elképzeléseket ma bolygóromantikának hívjuk. A tudomány fejlődésével aztán a sci-fik is igyekeztek lépést tartani. Míg először csak a holdutazás foglalkoztatta őket, a 20. századtól megjelent a Mars kolonizálása és/vagy terraformálása, s az élet lehetőségeit is áthelyezték a gázóriások egyes holdjaira (mint például az Europa és az Enceladus).

Gázbolygók és holdjaik

A Jupiter és a Szaturnusz (illetve úgy általában a gázóriások) már nem kapnak annyi főszerepet, mint a belső bolygók. Ennek oka gázóriás mivoltuk, amiért természetesen betelepítésre alkalmatlanok. Holdjaik jeges, mérgező, de mindenesetre kietlen világok, melyek szintén kevésbé vonzzák az írók fantáziáját…
A legnagyobb gázóriás a Jupiter. Talán leglátványosabb megjelenése Stanley Kubrick Űrodisszeia-adaptációjában látható. Bár a regény a Szaturnusz rendszerében játszódik, Kubrick inkább a Jupiterre helyezte át, mert azt olcsóbb volt megvalósítani a filmvásznon. Itt a monolit idegen technológiája olyan folyamatokat idéz elő, mely a Jupitert csillaggá alakítja. A Futuramában is körülötte kering egy eltévedt monolit, található rajta egy egyetem és megtudhatjuk, hogy a bolygónak eperillata van. A bolygónak rengeteg holdja van, ezek közül a négy legnagyobb, úgynevezett Galilei-hold jelenik meg talán leggyakrabban a science-fiction irodalmában. Több Jupiter-hold is megjelenik Isaac Asimov Lucky Starr és a Jupiter holdjai című regényében.

A sorban az első az Io. Isaac Asimov Lucky Starr és a Jupiter holdjai című ifjúsági regényében főhősünk az Io-n kerül ellentétbe egy szíriai kémmel egy klímaprobléma kapcsán. Kim Stanbley Robinson 2312 című regényében a hold egy barátságtalan és veszélyes hely, amelyben nyilvánvalóan nagy szerepe van a vulkanizmusnak. Ennek ellenére mind a négy nagy holdnak megkezdték a terraformálását. Sean Connery Gyilkos Bolygó című régi sci-fije is itt játszódik. A magyar címválasztás ismét érthetetlen, hiszen egy holdon járunk, az eredeti címe Outland. Ebben a színész egy szövetségi marsallt alakít, akinek egy bányászkolóniát kell felügyelnie, de hamarosan különös halálesetek történnek…

A második hold a jeges Europa. Stanley Kubrick Űrodüsszeia-adaptációjában, amikor a Jupiter csillaggá válik, az Europa kiolvad és zöld oázissá változik. A folytatásban ötven évvel később már trópusi óceánvilággá vált, ahonnan az emberek ki vannak tiltva. Emellett itt játszódik Jeff Carlson sorozata, a Fagyott égbolt.

A harmadik nagy hold a Merkúrnál is nagyobb Ganymedes, mely a sci-fi írók kedvenc hely-színe, akik élhető területeket keresnek a külső naprendszerben. Arthur C. Clarke Űrodisszeia-folytatásaiban a Ganymedest melegíti az új nap, így az egyenlítőjén egy nagy tó található, és a holdon található Anubis City a gyarmatosítás egyik központja.
James S. A. Corey A térség című sorozatában szintén él egy kolónia a Ganymedesen, melyet tükrökkel melegítenek (amik közül néhány egy fegyveres konfliktus miatt a felszínre zuhan). Ez problémás, hiszen itt zajlik a Naprendszer élelmiszertermelésének nagy része. Illetve ez a színhelye néhány baljós genetikai kísérletnek is…

A Szaturnusz festői bolygója is nagyobb szerepet kap néhány tudományos-fantasztikus műben. A sci-fi hajnalán számos mű használta helyszínéül. Miután azonban megállapították gázbolygó mivoltát, az új színhelyek alapja inkább gyűrűrendszere és holdjai lettek. A legklasszikusabb megjelenése Arthur C. Clarke 2001: Űrodisszeia című művében van, ahol minden a bolygó körül játszódik.

Ugyanitt a Iapetuson (a könyvben Japetus-nak van a hold írva) találja meg Dave Bowman a monolitot. A Iapetuson a valóságban is található egy sötét színű anyagkidobódás a Phoebéról, körülötte fehér a hold többi része. A regényben e fehér részen találja meg Dave a monolitot. Érdekesség, hogy amikor a regény megjelenése után 13 évvel a Voyager-szondák megérkeztek a Iapetushoz, valóban láttak egy fekete kis foltot a fehér terület közepén. Carl Sagan tagja volt a képalkotó csapatnak, s rögtön el is küldte a képet Clarke-nak, azzal a szöveggel: „Rád gondoltam…”

Talán épp az Űrodisszeia iránti tisztelgésként az Interstellar című filmben a rendező, Christopher Nolan is a Szaturnusz mellé helyezi el a féregjáratot, melyen át az Endurance igyekszik új, élhető földet találni az emberiség számára.
Mind a bolygó, mind egyes holdjai, például a Mimas, megjelennek Issac Asimov Lucky Starr és a Szaturnusz holdjai című regényében.

Ugyancsak említésszerűen, de a Titan megjelenik a Gattaca című filmben, ugyanis a főhős egy olyan küldetésre készül, melyben navigátornak jelölték ki. Kim Stanley Robinson 2312 című regényében egyes emberek az Enceladuson található mikrobákat esznek, abban a hitben, hogy azoknak gyógyító hatása van, a Iapetuson pedig egy óriás város épült fel a hold központi gerince mentén.
Ha már a Phoebét emlegettük…
A tudósok nem tartják kizártnak, hogy a hold valójában egy, a Szaturnusz gravitációja által rabul ejtett kóbor aszteroida, amely végül is bárhonnan származhat, akár a Naprendszeren kívülről is. Ezt az elméletet James S. A. Corey is meglovagolja, ugyanis A térség című sorozatban a történet innen indul, mivel ez a protonmolekula szülőhelye. Miután erről tudomást szereznek, jól el is pusztítják.

Az Uránusz és a Neptunusz esetén a magyarul megjelent művekben nem is igazán fordul elő, hogy egy történet központi elemei legyenek. Ennek fő oka, hogy népszerűségük eltörpül a hatalmas Jupiter és a látványos Szaturnusz mellett, s ugyanez igaz a holdjaikra is…

Kezdjük először is az Uránusszal. Tulajdonképpen egy magyarul megjelent sci-fi regény sem foglalkozik vele behatóan, de még a külhoniak közt sem találunk semmi említésre méltót. Pontosan, éppen, hogy csak említik, de központi szerepe nemigen van. Ugyanez igaz a filmes renoméjára is.

Az Uránusz és Neptunusz. Fotó: NASA, ESA, A. Simon (NASA Goddard Space Flight Center), M.H. Wong és A. Hsu (University of California, Berkeley)

Például feltűnik a Doctor Who-ban – ilyen feltűnése a többi bolygónak is majdnem mind volt a sorozatban, de mivel nem lényegesek, kihagytam őket. Viszont mindenképpen szeretném ismét példának hozni a Futurama sorozatot, bár ott is éppen csak megemlítik. Ám egy több évtizedes poént sütnek el: a jövőben a bolygó nevét megváltoztatják, hogy egyszer és mindenkorra véget vessenek a már emlegetett viccnek. Az Uránusz angolul kiejtve hasonlít ugyanis a „your anus” kifejezéshez (az ánusz pedig ugyebár a végbélnyílásunkat jelenti). A sorozat tudósai azonban valószínűleg megbuktak biológiából, mert a bolygó a Urectum nevet kapja. Ez kiejtve „your rectum”, a rektum pedig magát a végbelet jelenti.

Folytassuk az Uránusz holdjaival, melyek közül egyetlent lehet megemlíteni, a legnagyobbat, a Titaniát. James S. A. Corey A térség című sorozatában ezen a jeges égitesten található az emberiség legtávolabbi előörsének helye.

Utazzunk tovább a Neptunuszra, mellyel el is értük a Naprendszerünk szélét, legalábbis, ami a nagybolygókat illeti. Olaf Stapledon Az utolsó és első emberek című regényében, mely 1930-ban íródott, mikor még nem tudták, hogy a Neptunusz egy gázbolygó, az égitest lesz a végső otthona a már magasan fejlett emberi fajnak. A bolygót sűrű légkörűnek, de szilárd felületűnek ábrázolja. Ami a filmes világot illeti, a többek között Sam Neil és Laurence Fishburne által fémjelzett sci-fi horror, a Halálhajó is az égitest körül bolyong…

Az Ad Astra című filmben pedig a Neptunusz körül kering az a rosszul működő szerkezet, amely antianyag-robbanással fenyegeti a földet, s amely folyamatot a főszereplőnek (Brad Pitt) kell megakadályoznia. (Hozzáteszem, véleményem szerint a film igen gyenge lett – egy, apakomplexusról szóló pszichológiai történet, amit valamiért sci-fibe ágyaztak…)

A Futurama-ban a Neptunusz északi sarka az otthona az igen erőszakos robotmikulásnak, de Elzar, a szakács is egy neptuni faj kék bőrrel és négy karral. Illetve az egyik epizódban a szereplők kikötnek a Neptunusz Triton nevű holdján.

A Jordán-völgyi Tel-el-Hammam pusztulása egy Tunguzka-szerű impakt esemény során

Szerző: Balogh Gábor

Geológiai áttekintés

Az Izrael és Jordánia közti Jordán-hasadékvölgy része a Szír–Jordán árokrendszernek, mely Törökországtól az Akabai-öbölig húzódik, és maga is tagja a 5600 km hosszú Afrikai-árokrendszernek. A Jordán-hasadékvölgy a miocén korban alakult ki (23,8-5,3 millió évvel ezelőtt), amikor az Arab lemez északra, majd keletre távolodott Afrikától. Egymillió évvel később a Földközi-tenger és a Jordán-hasadékvölgy közötti szárazföld megemelkedett, a tenger pedig eltűnt (1). A Jordán-hasadékvölgy legalacsonyabb pontja a Holt-tengerben található, 790 méterrel a tengerszint alatt. A Holt-tenger partja a Föld legalacsonyabb szárazföldi pontja, 400 méterrel a tengerszint alatt. A Holt-tengertől északra fekvő termékeny völgy régóta a mezőgazdaság helyszíne volt a Jordán-folyóból származó víz és a völgy szélein található számos forrás miatt. Az évi hőmérséklet 20°C és 40°C között váltakozik.

A Jordán-hasadékvölgy. Baloldalon láthatjuk a Szinai félszigetet, középen a Vörös-tengert, fölötte a Holt-tengert. (Wikipédia)

Történelmi előzmények

A Jordán völgyi Ubeydiában találtak Homo Erectus maradványt, mely mintegy 1,4 millió éves (2). A vadászó-gyűjtögető Homo Sapiens útja is erre vezetett Afrikából való migrációja során (3). A terület fontos része volt az úgynevezett „Termékeny Félholdnak”, a civilizáció bölcsőjének, itt vette kezdetét a mezőgazdasági forradalom (4). A Kebara-kultúra a zömmel vadászó-gyűjtögető, de növénytermesztéssel is foglalkozó késő paleolitikumi kultúra, mely i. E. 18000 és i. E. 11000 között virágzott, ezt váltotta fel a már szinte kizárólagosan mezőgazdasági Natúfi-kultúra i. E. 15000 és i. E. 11500 között (5). Itt található a 11600 éves, a Bibliából jól ismert Jerikó városa is, mely a világ első városainak egyike (6).

Jerikóval szemben, a Jordán folyó keleti partján található Tel el-Hammam települése. Kultúrája több ezer évig, a kő-rézkor óta virágzott (7), köszönhetően termékeny talajának és közeli folyó állandó, biztos vízellátásának.

Tel el-Hammam (Deg777-Wikipédia; CC BY-SA 4.0)

Maga a tell szó (ejtsd: tel) héberül tel, arabul tell, vagy tall, dombot jelent, a régészeti szakkifejezés pedig régi településeket rejtő törmelékhalmot jelöl. Ezek a dombok a sokszor sík vidéken több ezer év alatt keletkeztek egy-egy településnél. A régi épületek elpusztulásakor a törmeléket nem hordták el, hanem újrahasznosították, így az évszázadok, évezredek alatt a település szintje több tíz méterrel is megemelkedhetett.

Tel el-Hammam

A középső bronzkorban a várost 34 hektár területet körülvevő falak védték, felső- és alsó-városra osztva azt, míg a sokkal nagyobb általános foglalkozási területe 97 hektáron feküdt. A korai bronzkorban Tel el-Hammam volt a legnagyobb városállam a Dél-Levantban. A középső bronzkorra csak kicsit volt kisebb, mint Hazor (81 hektár) és Ashkelon (61 hektár). Ekkor még Jeruzsálem és Jerikó mindössze (4,9–4,0 hektár) méretű volt (8).

Tel el-Hammam városállam uralkodói palotákat, templomokat, közigazgatási komplexumokat is építettek, virágzott a mezőgazdaság. Maga Tel el-Hammam magában foglalta a déli Jordán-völgy (Kikár) keleti peremén található Wadi Kafrein folyásának déli részét, és két forrást is élvezhettek lakói a városfalakon belül (egy termálforrást és egy édesvizű forrást is). Nyilvánvaló, hogy a város elhelyezésének és fejlesztésének fő szempontja a vízkészletek hasznosítása volt az egyre sivatagosodó területen.

A városállam helyi gazdái kétségkívül kihasználták az éves jordániai árvízciklus előnyeit, és a növényeket a friss hordalékos iszaplerakódásokba ültették. Ilyen bőséges, megbízható vízforrással, a település évi akár három betakarítással virágzott a tengerszint alatti, szubtrópusi környezetben. Így egyáltalán nem meglepő, hogy a virágzó Jordán-völgyi bronzkori civilizáció hagyomány alapját képezte a Teremtés könyvében.

A Jordán-völgy legtöbb településéhez hasonlóan, a késő bronzkorban (i. E. 1550–1200) itt is egy régészeti leletekben hiányos intervallumot, hézagot tapasztalunk. Ez a “Late Bronze Gap” a déli Jordán-völgy (héberül kikár) régió számos közeli településére jellemző, többek között Tel Iktanu, Tel Kefrein, Tel Nimrin, Tel el-Mustah, Tel Bleibel településeire is.

Míg a nyugati (Jeruzsálem, Bétel, Hebron), az északi (Beth Shean) és a keleti (Rabbath-Ammon, Tall al-Umayri, Nebo) városok a késő bronzkorban is megmaradtak, sőt, virágoztak, addig a déli Jordán-völgy keleti oldalának települései elpusztultak, és a következő öt-hétszáz évig lakatlanok is maradtak. A régió legtermékenyebb mezőgazdasági területe, amely legalább 3000 éve folyamatosan virágzó civilizációkat tartott el, hirtelen elpusztult. Ezt az eseményt a régészetben “3.7KYrBP Kikkar Event”-nek nevezik (9).

Vajon mi lehetett ez az esemény?  2005 óta végeznek régészeti ásatásokat a helyszínen, és a dolog fontosságát jelzi, hogy a projekt a Veritas Nemzetközi Egyetem Régészeti Iskolája, Santa Ana, CA és a Trinity Southwest Egyetem Régészeti Főiskolája, a Jordán Hashimita Királyság Régészeti Osztályának égisze alatt áll (10). A háborúk és földrengések által elpusztított ősi városokra jellemző szokásos törmelék mellett a kutatott réteg utolsó fázisának ásatásai rendkívül szokatlan anyagokat tártak fel: kerámiaszilánkokat, melyek külső felülete üveggé olvadt, némelyik buborékosan, mintha felforrt volna, megolvadt és buborékos sártéglák, részben megolvadt agyag, és olvadt vakolat. Ezek arra utalnak, hogy a város pusztulása valamilyen nagyon magas hőmérsékletű eseményhez kapcsolódott (11).

Tel el-Hammam katasztrofális pusztulása

A város felső részén hatalmas, mintegy 4 m vastag városfal-alapok voltak, melyek a szabadon álló iszaptégla sáncokat támasztották, többszintes iszaptégla épületek, köztük palotakomplexum, és egy monumentális átjáró. Napjainkban szinte semmi nem maradt a kőalapokon, kivéve egy tucatnyi iszaptéglát, melyek a 33 m magas felső fal északkeleti oldalán maradtak meg. Látszólag minden fal a felső városfal alapjainak tetejével majdnem egy szinten pusztult el. Ez magában foglalja a hatalmas palotakomplexumot, amelynek falai egykor 1,0-2,2 m vastagságúak voltak, és valószínűleg 11-15 m magasra emelkedtek.

A 4–5 emeletes palotakomplexum (52 m × 27 m), napon szárított iszaptéglából készült masszív felépítményekkel 11–15 méterre emelkedett a környező sánc teteje fölé. A palota ásatásaiból kiderül, hogy a palota felső emeleteinek a nagy része eltűnt, viszont hiányoznak a felső emeleteken összeomlott falak. Szinte sehol sem láthatók iszaptéglák, csak kis téglatöredékek véletlenszerűen szétszóródva a 1,5 méter vastag romhalmazban. Úgy tűnik, hogy a legtöbb tégla elpárolgott és északkeletre fújta el őket a helyszínről egy katasztrofális esemény (12).

Az elemzések széles skáláját végezték el, számos analitikai megközelítést alkalmazva, beleértve az optikai mikroszkópiát, a pásztázó elektronmikroszkópiát (SEM) energia-diszperzív spektroszkópiával (EDS), a mikroszondát, a fókuszált ionnyaláb-marást, a katodolumineszcenciát és a neutronaktiválást. 38 kémiai elemet, ásványt és egyéb anyagot elemeztek, ezek 74 százaléka olvad 1300 °C felett, 45 százaléka olvad 1600 °C felett, és 18 százaléka olvad 2000 °C felett. Ezek a hőmérsékletek általában az impakt események során jelenlévő oxigénhiányos, redukáló körülményekhez kapcsolódnak (13).

A vizsgált rétegek általában három részből állnak. Az első rész a legmélyebb, főleg porított iszaptégla, nagyobb iszaptégla-töredékekkel, tetőfedő agyaggal, hamuval, faszénnel, elszenesedett magokkal, el nem égett fával, égett textíliákkal, csontokkal, gipsztöredékekkel, törött és olvadt kerámiákkal. Ez a réteg a „törmelékmátrix”, vastagsága mintegy 1,5 m. A második rész, közvetlenül a törmelékmátrix fölött, vékony, finomszemcsés rétegekből áll, anyaga törött vakolat, mészkő szferulák, és szén. Ezt a réteget „átfújási rétegnek” nevezik. Semmi hasonlót nem találtak régebbi vagy fiatalabb rétegekben, kezdve a kora bronzkorban egészen a vaskorig. A harmadik rész egy szénben és hamuban gazdag réteg, amelyet „sötét rétegnek” neveznek, amely mindenhol megtalálható és jellemzően csak néhány centiméter vastag. A nagy városkapu külső, délnyugati felőli oldalán ez azonban közel 1 m vastag. A törmelékmátrix, az átfújási és a sötét réteg együttesen alkotja az úgynevezett „pusztító réteget” (14).

A leleteket összefoglalva, a palotából származó olvadt kerámia egyik töredékén talált, egy 30 µm széles, szénben gazdag részecske becsapódása (12a), a megolvadt kerámiák (12b), a megolvadt agyagtéglák (12c), a sokkolt kvarc (12d), a ritka föld-fém szferulák (12e) egyaránt egy impakt esemény tanúi.

A pusztító réteg modellezett kora I. e. 1661 ± 2 év, tehát 3611 éves. A radioaktív szén-dioxid kormeghatározással kapcsolatos bizonytalanságok miatt a pusztítási esemény korát fél évszázadra kerekítették: i. E. 1650 ± 50 év. Ez a kor összhangban van a szeriációval, a régészetben használt szokásos kormeghatározási módszerrel, amely a kerámia és a műtárgyak stílusbeli változásainak korán alapul. Ez a módszer i. E.1750–1650 környékére teszi az eseményt (10, 12).

A törmelék helyzetéből következtetni lehet a robbanás irányra is, ez DNY–ÉK, tehát a Holt-tenger északi része felett lehetett a légköri robbanás (12f). Ezt valószínűsíti, hogy a pusztító réteget anomálisan magas sókoncentráció jellemzi. Az is megfigyelhető, hogy az iszaptéglák közti habarcs a sókristályok miatt megkeményedett, és hogy sok cserépdarabot és csontot nagy sókristályok vontak be. A termőföldekre ömlő, nagy mennyiségű sós víz lehetetlenítette el a földművelést, 600 évre lakatlanná téve Tel el-Hammam környékét (19).

Párhuzamok a Tunguzka-eseménnyel

Noha a Tunguzka robbanás hőmérséklete ismeretlen, de becslések szerint több mint 10 000 °C lehetett (16). A légrobbanás kezdetben mintegy 200 km2 erdőt gyújtott meg mielőtt elterjedt, és végül 500 km2 erdőt pusztított el. A számítások szerint (17, 18) nagyságrendileg a Tunguzka-eseményhez hasonló 12-23 megatonnás robbanás magyarázhatja meg a Tel el-Hammamban tapasztaltakat (12g).

Az impaktor, amely 45 fokos beesési szögben hatolt be az atmoszférába, üledékes kőzetekkel fedett terület felett robbant fel, Tel el-Hammamtól körülbelül 5 kilométerrel délnyugatra. Nagyságrendileg 60 és 75 méter átmérőjű lehetett az impaktor. Az alsó határ (60 méter) modellje szerint 4,7 km magasságban robbant fel, 12 MT nagyságrendben – a felső határ (75 méter) esetében 1,3 km magasságban robbant fel, 23 MT nagyságrendben. Ebben az esetben az elméleti nyomás 2,5 bar (35 psi) lehetett. Ez a nyomás már meghaladja a modern vasbeton épületek pusztulási határait is, és több mint 99 százalékos emberi halálozási arányt eredményez. A hosszú másodpercekig tartó hatalmas hő (1850 °C) viszont már 100 százalékos halálozási arányt jelent. A két modell egyikében sem képződnének impakt, robbanásos kráterek a felszínen, hanem több, kisebb-nagyobb sekély pitkráter, melyeket idővel víz és üledékek tölthetnek meg (12).

Egy olyan figyelemre méltó katasztrófa, mint Tel el-Hammam kozmikus objektum általi megsemmisítése, teremthetett olyan szájhagyományt, amely sok generáción át történő továbbadása után a bibliai Szodoma történetének forrása lett (22, 23, 24).

John Martin: „Szodoma és Gomora”

Források:

  1. Abdallah S. Al-Zoubi, Z.S.H. Abu-Hamatteh, Geological evolution of the Jordan valley. https://www.researchgate.net/profile/Z-Abu-Hamatteh/publication/250276328_Geological_evolution_of_the_Jordan_valley/links/58b3e40945851503be9e1a9c/Geological-evolution-of-the-Jordan-valley.pdf
  2. Bar-Yosef (1994). “The lower paleolithic of the Near East” (8): 211–265.
  3. Ian Tattersall, Human origins: Out of Africa. https://www.pnas.org/content/106/38/16018
  4. Jean-Pierre Bocquet-Appel (July 29, 2011). “When the World’s Population Took Off: The Springboard of the Neolithic Demographic Transition”. Science. 333 (6042): 560–561.
  5. Grosman, Leore (2013). “The Natufian Chronological Scheme – New Insights and their Implications”. In Bar-Yosef, Ofer; Valla, François R. (eds.). Natufian Foragers in the Levant: Terminal Pleistocene Social Changes in Western Asia (1 ed.). New York: Berghahn Books. pp. 622–627.
  6. Mithen, Steven (2006). After the ice: a global human history, 20,000–5000 BCE (1st Harvard University Press pbk. ed.). Cambridge, Massachusetts: Harvard University Press. p. 57.
  7. Steven Collins, Carroll M. Kobs, and Michael C. Luddeni, An Introduction to Tall Al-Hammam with Seven Seasons (2005–2011) of Ceramics and Eight Seasons (2005–2012) of Artifacts, vol. 1
  8. Leen Ritmeyer “Chart of showing relative sizes of major cities in the Levant” Steven Collins, Carroll M. Kobs, and Michael C. Luddeni, The Tall Al-Hammam Excavations: An Introduction to Tall al-Hammam with Seven Seasons (2005–2011) of Ceramics and Eight Seasons (2005–2012) of Artifacts, vol. 1 (Winona Lake, IN: Eisenbrauns, 2015).
  9. Tall el-Hammam Excavation Project, https://tallelhammam.com/discoveries
  10. Silvia, P. J. The Middle Bronze Age civilization-ending destruction of the Middle Ghor. Ph.D. thesis, Trinity Southwest University (2015).
  11. Collins, S., Byers, G. A. & Kobs, C. M. The Tall al-Hammam Excavation Project, Season Fourteen 2019 Report: Excavation, Interpretations, and Insights (Department of Antiquities of Jordan, Amman, Jordan, 2019).
  12. Ted E. Bunch et al. A Tunguska sized airburst destroyed Tall el-Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. https://www.nature.com/articles/s41598-021-97778-3
    12a. https://www.nature.com/articles/s41598-021-97778-3/figures/9
    12b. https://www.nature.com/articles/s41598-021-97778-3/figures/10
    12c. https://www.nature.com/articles/s41598-021-97778-3/figures/11
    12d. https://www.nature.com/articles/s41598-021-97778-3/figures/18
    12e. https://www.nature.com/articles/s41598-021-97778-3/figures/26
    12f. https://www.nature.com/articles/s41598-021-97778-3/figures/17
    12g. https://www.nature.com/articles/s41598-021-97778-3/figures/52
  13. Moore, A. M. T. et al. Evidence of cosmic impact at Abu Hureyra, Syria at the younger Dryas Onset (~12.8 ka): High-temperature melting at > 2200 °C. Sci. Rep. 4185 (2020).
  14. Ramsey, B. C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
  15. Ramsey, B. C. Probability and dating. Radiocarbon 40, 461–474
  16. LeMaire, T. R. Stones from the stars: the unresolved mysteries of meteorites. (Prentice Hall, 1980).
  17. Collins, G. S., Melosh, H. J. & Marcus, R. Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit Planet Sci 40, 817–840.
  18. Collins, G. S., Melosh, H. J. & Marcus, R. Earth impact effects program. https://impact.ese.ic.ac.uk/ImpactEarth/
  19. Sonia Fernandez, Evidence that a cosmic impact destroyed ancient city in the Jordan Valley. https://phys.org/news/2021-09-evidence-cosmic-impact-ancient-city.html?fbclid=IwAR0GxwZcudFrt2FYYIsQxp-pMNKtUwaHcVxp-i16HzW3dxFLJxjy_r0Ky7k
  20. Evan Gough, A meteor may have exploded in the air 3,700 years ago, obliterating communities near the Dead Sea. https://phys.org/news/2018-12-meteor-air-years-obliterating-dead.html
  21. Boslough, M. & Crawford, D. A. Low-altitude airbursts and the impact threat. Int. J. Impact Eng. 35, 1441–1448 (2008).
  22. Livia Gershon, Exploding Space Rock May Have Inspired Biblical Story of Sodom. https://www.smithsonianmag.com/smart-news/destruction-of-city-by-space-rock-may-have-inspired-biblical-story-of-sodom-180978734/
  23. Phillip J Silvia, The Civilization-Ending 3.7KYrBP Event: Archaeological Data, Sample Analyses, and Biblical Implications. https://www.hou.usra.edu/meetings/metsoc2017/pdf/6001.pdf
  24. Mózes I. könyve, Károli Gáspár fordítása. https://www.arcanum.com/hu/online-kiadvanyok/Karoli-biblia-karoli-gaspar-forditasa-1/mozes-i-konyve-2/1-moz-19-3BC/

A Mars terraformálásának problematikája planetológiai szempontokból

Szerző: Balogh Gábor

A túlnépesedés, valamint a kitermelhető nyersanyagok, energiahordozók kimerülése már régóta foglalkoztatja az emberiséget. A tudományos-fantasztikus irodalomban, de még a tudományos fórumokon is hamar megjelent más bolygók, elsősorban a Mars földiesítésének (terraformálásának) gondolata. Vajon van-e realitása ennek az ötletnek?

A Mars a Földhöz leginkább hasonló bolygó a Naprendszerben. Mivel a Naprendszer lakható zónájában található (1, 2), megfelelő naptávolságban van ahhoz, hogy elvileg felszíni életet hordozhasson. Az 1976-ban leszálló Viking űrszondák (3) nem találtak bizonyítékot arra, hogy a Marson létezik az élet, de a remény megmaradt: lehetséges lenne bolygómérnöki módszerekkel úgy módosítani a marsi környezetet, hogy földi élőlények élhessenek ott?

Különböző csillagok körüli lakhatósági zóna, köztük Naprendszerünké
Forrás: Chester Harman – Wikipedia; CC BY-SA 4.0

Mars

A Mars 1,5 Csillagászati Egység távolságban kering a Nap körül, tehát másfélszer olyan messze attól, mint Földünk. Tömege a Földének tizede, felszíni gravitációja harmada. A napok hossza hasonló, 1,02 földi nap, egy marsi év 2,13 földi évnek felel meg, tehát az évszakok kétszer olyan hosszúak, mint bolygónkon. A leghidegebb mért hőmérséklet −143 °C, a legmagasabb 35 °C (4, 5). A felszíni nyomás nagyon alacsony és változó, 0,4–0,87 kPa, ez átlagban 0,636 kPa, ami 0,00628 atmoszféra nyomásnak felel meg.

A vörös bolygót nemcsak Földhöz való hasonlósága teszi első számú jelöltté a földiesítésre, hanem geológiai múltja is. Noha a Marson ma a kevés víz főleg felszín alatti jég (6), kevés pára (7), és még ritkábban sókkal túltelített víz, „brine” található (8, 9) – ám a múltban, mintegy 3,8 milliárd évvel ezelőtt a bolygó sűrűbb atmoszférával rendelkezett (10), mely lehetővé tette a folyékony víz létezését a felszínen. Naptól való nagy távolsága miatti alacsony hőmérsékletet a légkör széndioxid-tartalma által generált üvegházhatás kiegyenlítette. Az északi Vastitas Borealis medencét víz borította, mely a bolygó harmadát fedte be (11, 12).

A Mars topografikus térképe. Északon látható a Vastitas Borealis medence
Forrás: NASA/JPL/USGS

Légköre nagy részét azonban elvesztette a vörös bolygó. Egy része a talajban kötődött meg karbonátok formájában (13), nagy részét pedig a napszél „fújta le” a Marsról magnetoszféra hiányában (14). A vastag légkör által nyújtott elegendő nyomás hiányában pedig a marsi óceánok sorsa is megpecsételődött. A víz egy része megfagyott, majd később kőzetrétegekkel és porral betemetődött, egy része pedig szublimált a marsi atmoszférába, végül onnan is eltűnt. A marsi porviharok által magasba ragadott vízmolekulákat az UV sugárzás lebontotta (15).

A marsi talaj enyhén lúgos kémhatású, és noha ásványi összetétele megfelelő lenne akár növénytermesztéshez is, 0,6 százalékban perklorátot tartalmaz, mely meggátolna mindenféle nővényi és állati életet.

Planetológiai előzmények

A múltbeli víz geológiai bizonyítékai közé tartoznak az árvizek által vájt hatalmas csatornák (16), ősi folyóvölgyi hálózatok (17, 18), folyódelták, és tómedrek (19), valamint a felszínen észlelt olyan kőzetek és ásványok, amelyek csak folyékony vízben keletkezhettek (20). Számos felszíni forma utal jég (permafrost) jelenlétére, valamint a jég mozgására a gleccserekben (21).

A kora Noachi korban (4,6-4,1 milliárd éve) az elsődleges légkör mintegy 60% semmisült meg az impakt események által. Ebből a korszakból származnak a marsi filloszilikátok, melyek a folyékony víz, és ezzel együtt a vastag atmoszféra bizonyítékai. A középső és késő Noachi korszakban (4,1-3,8 milliárd éve) alakult ki a vörös bolygó másodlagos atmoszférája, amiért a marsi vulkanizmus felelt, főként a Tharsis tűzhányói. A légkörbe hatalmas mennyiségű H2O, CO2, and SO2 került (22). Ebben a korszakban alakultak ki a marsi folyóhálózatok, és voltak rendszeresek a globális katasztrofális áradások is. E korszak végén szűnt meg a Mars mágneses mezeje.

A Hesperiumi és az Amazóniai korszakokban (3,8 milliárd évtől a jelenkorig) még jelen voltak a globális áradások, vulkáni gázkibocsájtások, de ezt a korszakot leginkább a marsfelszín lassú oxidációja jellemezte. Ez az oxidáció azonban már nem a szabad oxigénhez, hanem a Marson jelenlevő hidrogén-peroxid jelenlétéhez köthető (23).

Nemcsak a marsi mágneses tér megszűnése, valamint az ebből adódó atmoszféra és hidroszféra elvesztése, hanem egy nagy marsi hold hiánya is szempontunkból végzetes. Miközben Földünk tengelye többé-kevésbé stabilizált Holdunk gravitációja miatt, a Mars tengelye – mely pillanatnyilag 25° – ingadozik 0° és 60° között. Nagy tengelydőlés esetén a sarki jég vándorolni kezd alacsonyabb szélességekre, létrehozva a marsi jégkorszakokat (24). Az utóbbi ötmillió évben 40 nagyobb jégátrendeződés volt a Marson.

A Mars terraformálása

A Mars gyarmatosításának, majd terraformálásának okai közé tartozik a kutatás, gazdasági érdeklődés az erőforrásai iránt, és különösen annak lehetősége, hogy más bolygók betelepedése csökkentheti az emberiség kihalásának valószínűségét.

A Mars terraformálása, egy művészi koncepción
Forrás: Ittiz – Wikipedia; CC BY-SA 3.0

Jelenleg a Mars természetesen nem alkalmas arra, hogy életet hordozzon. Még egy terraformálás nélküli, a környezettől elzárt mars-bázisokon történő megtelepedés, sőt, maga az út is végtelenül nehéz és veszélyes: egy Marsra vezető út során 500 – 1000 mSv sugárzási dózis (25) érne egy űrhajóst (összehasonlításul: egy mellkas-röntgen során 0,1 mSv dózist kapunk). Ilyen nagy dózisnak természetesen számtalan egészségre káros hatása van (26).

A Marsi telepesekre váró legfontosabb környezeti hatások

  • kevés fény – a Földinek 60%-a (27).
  • alacsony gravitáció – a Földinek 38%-a, mely izomvesztéssel és a csontok meszesedésével jár (28).
  • belélegezhetetlen atmoszféra – 96% széndioxid.
  • alacsony légköri nyomás – 0,636 kPa, bőven az Armstrong-határon túl, ahol a testnedveink már forrnak. Ez a Földön 19 km magasságban van.
  • mágneses tér hiányában ionizáló sugárzás a felszínen (29).
  • alacsony felszíni hőmérséklet, átlagban −63 °C.
  • globális porviharok
  • perklorátok a talajban (30).

Beláthatjuk, hogy a marsi környezetben gyakorlatilag hasonló technikai helyzetben lennénk, mint akár a Holdon. Megfelelő védelem (űrruha, környezettől elzárt telepek) nélkül ugyanúgy lehetetlen az életben maradás. De vajon van reális esélye a Mars terraformálásának?

Tervek a terraformálásra

Az első lépés az atmoszféra megnövelése lenne, mely lehetővé tenné a folyékony víz létezését a felszínen. Mivel a légkör főleg széndioxidból áll, az üvegházhatás egyben meg is emelné a hőmérsékletet. Hogy ezt elérjék, jeges planetezimálokat, üstökösöket zuhantatnának a Marsra. A hozott jég, széndioxid, ammónia egyaránt hozzájárulna az atmoszféra növelésére, gazdagítva azt olyan anyagokkal, melyek segítenének a hőmérséklet növeléséhez is. Az ammónia például a Marson órák alatt lebomlik nitrogénné és hidrogénné, mely később elillan az űrbe. A nehezebb nitrogén megmaradna, később fontos része lenne a megváltozott atmoszférának. A jeges planetezimálok sok szerves anyagot is hoznának, melynek elengedhetetlen szerepe lenne a későbbi biomassza kialakításához (31, 32).

Egyéb tervek között szerepelne a napfény hatalmas tükrökkel való marsfelszínre irányítása (31), esetleg a felszíni albedo csökkentése, mely több nagyfényt nyelne el, ezáltal felmelegedne a felszín.

Ha sikerülnének is ezek a tervek, nem járnának hosszú távú haszonnal, hiszen a múltban már volt a Marsnak vastag atmoszférája, felszíni óceánja. Kellő mágneses tér hiányában azonban a létrehozott vastag atmoszféra és az óceán is ismét elszöknének a vörös bolygóról. A Mars viszont képtelen mágneses teret produkálni, úgy, mint a Föld. Földünk folyékony külső magjában létrejövő áramlások által keltett dinamó-mechanizmus elképzelhetetlen a Marson (33). Mivelhogy nem tudjuk a vörös bolygó magját megváltoztatni, a terraformálás ilyen módokon megoldatlannak tűnik.

Mágneses védőpajzs az L1 ponton

A „Planetary Science Vision 2050 Workshop” keretében vetette fel Jim Green, a NASA tudósa azt az ötletet (34, 35), hogy a Nap és a Mars között lévő L1 ponton elhelyezett 1-2 tesla erősségű mágneses védőpajzs egy részleges védelmet kreálhat a vörös bolygó számára. A sarkokon szublimáló széndioxid melegíteni kezdené a légkört, az olvadó jég pedig ismét óceánt hozna létre. Számítások szerint néhány év alatt a Földi atmoszferikus nyomás felét is akár el lehetne érni a Marson. Úgy tűnik, hogy ez az ötlet az egyetlen reális terv a Mars terraformálására, ám ez rögtön felvet még egy problémát.

Mágneses védőpajzs terve az L1 ponton
Forrás: NASA/Jim Green

Az asztrobiológiai-etikai probléma

A Marsi felszín – ahogyan már láttuk az előzőekben – alkalmatlan az élet számára. De mélyen a talajban, ahol a nyomás lehetővé teszi a folyékony víz létét, esetleg akár pár méter mélyen, vulkáni utóműködési pontokon nem zárhatjuk ki a marsi élet lehetőségét (36). Amennyiben életet találunk a Marson – a marsi talajban – a vörös bolygó földi betelepítése, terraformálása lehetetlenné válna (37). A jelenleg is elfogadott Bolygóvédelmi vezérelv (Planetary Protection) célja, hogy küldetések esetén megakadályozza mind a célzott égitest szennyeződését, mind a Föld biológiai visszaszennyeződését (38). Az egyik cél az, hogy megőrizzük a Mars érintetlen természetét, a másik az, hogy ne hurcoljunk be olyan életformát a Földre, amelyik esetlegesen veszélyes lehet a földi életre. A fő hangsúly a mikroorganizmusokon és a potenciálisan invazív fajokon van, de érdekes módon a többsejtű életformák veszélyét (pl. zuzmókat) sem tartják teljesen kizártnak. Terraformálás előtt tehát mindenképpen meg kell győződnünk arról, hogy a Mars nem hordoz életet.


Források:

  1. Summary of the Limits of the New Habitable Zone, http://phl.upr.edu/library/notes/summarylimitsofthenewhabitablezone
  2. Nowack, Robert L. “Estimated Habitable Zone for the Solar System”. Department of Earth and Atmospheric Sciences at Purdue University
  3. Viking Mission to Mars, https://nssdc.gsfc.nasa.gov/planetary/viking.html
  4. What is the Typical Temperature on Mars? http://www.astronomycafe.net/FAQs/q2681x.html
  5. Extreme Planet Takes Its Toll, https://web.archive.org/web/20131102112312/http://marsrover.nasa.gov/spotlight/20070612.html
  6. Mars Ice Deposit Holds as Much Water as Lake Superior, https://www.jpl.nasa.gov/news/mars-ice-deposit-holds-as-much-water-as-lake-superior
  7. Scientists detect water vapour emanating from Mars, https://phys.org/news/2021-02-scientists-vapour-emanating-mars.html
  8. Martín-Torres, F. Javier; Zorzano, María-Paz; Valentín-Serrano, Patricia; Harri, Ari-Matti; Genzer, Maria. “Transient liquid water and water activity at Gale crater on Mars”. Nature Geoscience. 8 (5): 357–361.
  9. Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. “Spectral evidence for hydrated salts in recurring slope lineae on Mars”. Nature Geoscience. 8 (11): 829–832.
  10. Carr, Michael H (1999). “Retention of an atmosphere on early Mars”. Journal of Geophysical Research. 104 (E9): 21897–21909.
  11. Baker, V. R.; Strom, R. G.; Gulick, V. C.; Kargel, J. S.; Komatsu, G.; Kale, V. S. “Ancient oceans, ice sheets and the hydrological cycle on Mars”. Nature. 352 (6336): 589–594.
  12. Read, Peter L. and S. R. Lewis, “The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet”, Praxis, Chichester, UK, 2004.
  13. Carr, Michael H (1999). “Retention of an atmosphere on early Mars”. Journal of Geophysical Research. 104 (E9): 21897–21909, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999JE001048
  14. Kass, D. M.; Yung, Y. L. (1995). “Loss of atmosphere from Mars due to solar wind-induced sputtering”. Science. 268 (5211): 697–699, https://ui.adsabs.harvard.edu/abs/1995Sci…268..697K
  15. Massive dust storms are robbing Mars of its water, https://www.sciencenews.org/article/mars-dust-storms-water?mode=topic&context=36
  16. Regional, Not Global, Processes Led to Huge Martian Floods. Planetary Science Institute. SpaceRef, http://spaceref.com/mars/regional-not-global-processes-led-to-huge-martian-floods.html
  17. Harrison, K; Grimm, R. (2005). “Groundwater-controlled valley networks and the decline of surface runoff on early Mars”. Journal of Geophysical Research. 110 (E12): E12S16, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JE002455
  18. Howard, A.; Moore, Jeffrey M.; Irwin, Rossman P. (2005). “An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits”. Journal of Geophysical Research. 110 (E12): E12S14. , https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JE002459
  19. Weitz, C.; Parker, T. (2000). “New evidence that the Valles Marineris interior deposits formed in standing bodies of water” (PDF). Lunar and Planetary Science. XXXI: 1693., https://www.lpi.usra.edu/meetings/lpsc2000/pdf/1693.pdf
  20. New Signs That Ancient Mars Was Wet. Space.com, https://www.space.com/6033-signs-ancient-mars-wet.html
  21. Head, J.; Marchant, D. (2006). “Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30 – 50 N latitude band (abstract)”. Lunar Planet. Sci. 37: 1127.
  22. Jakosky, B. M.; Phillips, R. J. (2001). “Mars’ volatile and climate history”. Nature. 412 (6843): 237–244. https://www.nature.com/articles/35084184
  23. Chevrier, V.; et al. (2006). “Iron weathering products in a CO2+(H2O or H2O2) atmosphere: Implications for weathering processes on the surface of Mars”. Geochimica et Cosmochimica Acta. 70 (16): 4295–4317.
  24. Forget, F.; et al. (2006). “Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity”. Science. 311 (5759): 368–71.
  25. R.A. Mewaldt; et al. (3 August 2005). “The Cosmic Ray Radiation Dose in Interplanetary Space – Present Day and Worst-Case Evaluations” (PDF). International Cosmic Ray Conference. 29th International Cosmic Ray Conference Pune (2005) 00, 101-104. 2: 103.
  26. Staff (29 October 2015). “NASA’s Efforts to Manage Health and Human Performance Risks for Space Exploration (IG-16-003), https://oig.nasa.gov/audits/reports/FY16/IG-16-003.pdf
  27. Sunlight on Mars – Is There Enough Light on Mars to Grow Tomatoes?. https://www.firsttheseedfoundation.org/resource/tomatosphere/background/sunlight-mars-enough-light-mars-grow-tomatoes/
  28. The Strange, Deadly Effects Mars Would Have on Your Body, https://www.wired.com/2014/02/happens-body-mars/
  29. Gifford, Sheyna E. “Calculated Risks: How Radiation Rules Manned Mars Exploration”, https://www.space.com/24731-mars-radiation-curiosity-rover.html
  30. Daley, Jason (July 6, 2017). “Mars Surface May Be Too Toxic for Microbial Life – The combination of UV radiation and perchlorates common on Mars could be deadly for bacteria”. https://www.smithsonianmag.com/smart-news/mars-surface-may-be-toxic-bacteria-180963966/
  31. Robert M. Zubrin (Pioneer Astronautics), Christopher P. McKay. NASA Ames Research Center (c. 1993). “Technological Requirements for Terraforming Mars”, http://www.users.globalnet.co.uk/~mfogg/zubrin.htm
  32. Whitehouse, David (July 15, 2004). “Dr. David Whitehouse – Ammonia on Mars could mean life”, http://news.bbc.co.uk/2/hi/3896335.stm
  33. Mars’s core has been measured — and it’s surprisingly large, https://www.nature.com/articles/d41586-021-00696-7
  34. Nasa wants to put a giant magnetic shield around Mars so humans can live there, https://www.wired.co.uk/article/magnetic-shield-mars-habitable
  35. Policy, Pathways, Techniques, and Capabilities – from NASA Planetary Science: Vision 2050 (Talk: A Future Mars Environment for Science and Exploration). :1:36:00, https://livestream.com/viewnow/vision2050/videos/150701155
  36. Horváth, A.; Gánti, T.; Bérczi, Sz.; Gesztesi, A.; Szathmáry, E. (2002). “Morphological Analysis of the Dark Dune Spots on Mars: New Aspects in Biological Interpretation”. 33rd Annual Lunar and Planetary Science Conference. 33: 1108.
  37. Committee on an Astrobiology Strategy for the Exploration of Mars; National Research Council (2007). “Planetary Protection for Mars Missions”. An Astrobiology Strategy for the Exploration of Mars. The National Academies Press. pp. 95–98. ISBN 978-0-309-10851-5.
  38. Tänczer, John D. Rummel; Ketskeméty, L.; Lévai, G. (1989). “Planetary protection policy overview and application to future missions”. Advances in Space Research. 9 (6): 181–184.

Egy unikális meteorittípus – az angrit

Szerző: Kormos Balázs

Ezúttal egy igen ritka meteorittípust hoztam, mely származását tekintve vitatott a kutatók körében. Minden gyűjtő szeretne látni egy angritot a polcán, ebben biztos vagyok. Impozáns ritkaság. Az angritok az akondritok egyik különleges csoportja. Többnyire augitból állnak, de olivin, anortit, troilit stb. is megtalálható bennük. A csoport névadója természetesen az első feljegyzett hullása ennek az akondrit-fajtának, vagyis az Angra dos Reis meteorit. Kristályosodási koruk körülbelül 4,55 milliárd év. De mi is lehetett szülőégitestük? Több kisbolygó színképelemzését tekintve két lehetséges jelöltet azonosítottak: (289) Nenetta és (3819) Robinson. Viszont több tudós a lehetséges égitestek közzé sorolja még a Merkúrt is. Sőt, akad, aki kimondottan emellett érvel.

A fotókon a saját angrit-szeletem látható, az NWA 4931, mely párosítva lett az NWA 2999-cel. Az NWA 2999 a rejtélyes angrit meteoritok tizedik ismert klasszifikációját képviseli. Ezt követően sok NWA jelölést kapott angrit lett hivatalos, melyeket rendre a 2999-hez párosítottak. Így viszonylag gyorsan 30 fölé ugrott a klasszifikált angritok száma. Ennek oka, hogy a felfedezett szórásmezőről származó meteoritokat külön értékesítették, és így külön is klasszifikálták őket. Egyes esetekben maga a kereskedő darabolta a mennyköveket, így több szelethez jutva, azokat igen jó haszonnal tudta értékesíteni, mivel az angritok ára igen magas. A legtöbb angrit textúrája gyors lehűlésére utal. Az NWA 2999 általános, szemcsés szerkezettel rendelkezik, hasonlóan az Angra dos Reis-hez és a LEW 86010-hez. Ám jellegzetes nagy anortit, spinel és olivin klasztok is megfigyelhetők benne, akár 6 mm-ig, valamint 10-20 μm széles anortit „koronák” is a spinel szemcsék körül. „Tudomásunk szerint a meteoritok között egyedülálló”, olvashatjuk ezen az oldalon. Részletesebben az angritokról pedig itt tudakozódhatunk

Rekordgyorsan keringő kisbolygót fedeztek fel

Szerző: Kovács Gergő

Tíz napja, a chilei 570 megapixeles Dark Energy Camera (DECam – Sötét Energia Kamera) segítségével csillagászok tíz nappal ezelőtt felfedezték az eddig ismert legkisebb keringési idejű aszteroidát, számol be a Space.com. A hozzávetőlegesen 1 kilométer átmérőjű égitest mindössze 20 millió kilométerre (0,13 Cs.E-re) kering a Nap körül, 113 nap alatt megkerülve csillagunkat.

Fantáziarajz a 2021 PH27 jelű kisbolygóról (jobbra fent).
Kép forrása: CTIO/NOIRLab/NSF/AURA/J. da Silva (Spaceengine)

A 2021 PH27 nevű kisbolygó keringési idejénél csupán a merkúri év rövidebb, a legbelső bolygónk ugyanis mindössze 88 nap alatt tesz egy kört központi csillagunk körül. Az újonnan felfedezett kisbolygó azonban a Merkúrnál elnyúltabb pályával rendelkezik, így Napunkat akár 20 millió kilométerre is megközelítheti, szemben a Merkúr 47 millió kilométeres perihélium-távolságával.

42 perc, 0,8 millió kép – célpont a Szaturnusz

Szerző: Kereszty Zsolt

Július 29/30 éjjelére a Meteoblue időjárás szervere 1,3-1,4″-es seeinget becsült a győri Corona Borealis Csillagvizsgáló égboltja felé, az érték hazai viszonyok között nagyjából közepesnek számít, láttunk már jobbat és rosszabbat is ennél. Sötétedés után kezdtem hűteni a távcsöveket, nyitott kupolaajtónál, éjfél felé rápillantottam a Szaturnuszra a szokásos ADC + Takahashi Abbe Ortho 6 és 12,5 mm-es okulár duóval a főműszer C14 313 X-os nagyításában. A bolygó szokottnál részletdúsabban és kontrasztosabban látszódott, a perem és a gyűrű a számított 80 km/h-s jetstream sebesség miatt nem túl erősen, de azért remegett (lobogott). Aznap éjjel a bolygó 01:15-kor (NyiSz) delelt 24 fokos horizont feletti magasságon, ezért 00:40-kor elkezdtem a 25000 db egyedi képet tartalmazó videók rögzítését. Először az Astronomik ProPlanet 642-es szűrővel, majd a Baader UV+Ir cut vágó szűrővel, végül 16 – 16 db egyedi videoszekvencia készült SharpCap Pro szoftverrel, ami összesen 0,8 millió képet jelent, 42 perc alatt.

Az észlelés közben a változó seeing 6-7/10 érték között táncolt, végül 4 kiemelkedően jó és 7 közepesnél jobb kép készült, a többi átlagosra sikeredett, az átlátszóságot pedig 6/10-re becsültem.

A felvételsorozatokat elfoglaltság miatt csak később dolgoztam fel, AS!3-ban, Registaxban, majd a 16-16 db egyedi képet WINJuposban derotáltva. További képmanipulációkat főleg PS-ben, Registaxban végzetem, úgy mint, színegyensúly, intelligens élesítés, telítettség, élénkség, egyedi színek, Gauss elmosás, görbézés, maszkolás, 130 % drizzle, színzaj, R.tax csúszkák újra, unsharp mask, stb. A teljes képfeldolgozás kb. 3 órát vett igénybe.

A felvételek készítésekor a +0,2 mg-s bolygó 8,9383 CSE-re, azaz 1337,1 millió km-re volt Földünktől, a korong látszó átmérője 18,6 “, megvilágítottsága természetesen 100 %. Számított oppozíciója 2021. augusztus 2.-án 07:57-kor (NyiSz) következik be, ekkor Napunktól 179 fokra látszódik. A július 29.-i időpont nagyon közel van az oppozícióhoz, ezért ilyenkor már látszódik a Seeliger-effektus hatása, ami azt jelenti, hogy a gyűrű oppozíció közelében fényesebb mint a korong, az effektust az észlelés időpontjában mind vizuálisan mind fotografikusan meg tudom erősíteni.

A bolygó végleges felvételén 5-6 sáv látható változó kontraszt mellett, halvány csík az egyenlítői EB, krémes színű vastag sáv a NEB, vékony csík a vöröses NEBs. Kontrasztos a sötétebb, barnás-bordós NNTeB, sárgás-zöldes az NNTeZ, sötétebb és széles a zöldes színű NNNTeB, a hexagon még ennél is sötétebb. A déli SPC a pólus felé egyre hangsúlyosabban és feltűnően kékül. A gyűrűk: a fényes külső A gyűrűben vékonyabb sávok tűnnek fel, a Cassini-rés kontrasztos, benne átlátszódik a bolygó déli, világoskék korongja, a B gyűrű nagyon fényes, benne a külső szélen egy csík tűnik fel, a C gyűrű szintén feltűnő és egész sokáig követhető. A metán sávszűrős képen a szokásos módon fényes az A és B gyűrű, illetve sejthető az EZ, EB.

A képet az ALPO szerinti S=Dél fent szerint tájoltam.

További részletek weblapomon itt:
http://crbobs.hu/galeria/naprendszer/szaturnusz-2021-07-29/

A Mars, a vörös bolygó

Szerző: Fazekas Panna

A Mars az egyedüli bolygó az esti égbolton, amely vörös színben pompázik. Színét a talajában lévő vastól kapja. Azonban az ókori idők emberei tűzmarta, véráztatta világnak látták. Emiatt nevezték el a mondabeli háborús istenségről, aki a rómaiaknál Mars volt. A Mars és a földünk sok közös tulajdonsággal rendelkezik. Napjaik hossza majdnem azonos, a Marsnak csak 37 perccel több idő kell egy tengely körüli fordulathoz. Mindkét bolygón láthatunk hegyeket, szurdokokat, sivatagokat, tűzhányókat, sarki jégsapkákat, és még folyómedreket is, de a Mars medrei már kiszáradtak. A Marsnak sok ősi folyómedre van, amik a régi időkben még folyékony vízzel voltak tele. Az is valószínű, hogy óceán is volt e bolygón. Ennek a rengeteg víznek egy része az északi pólusnál fekvő jégsapkában végezte, egy másik része fagyottan, a marsi felszín alatt mélyen eltemeve létezhet, a legtöbb azonban elszökött az űrbe.

Forrás: Pixabay

A Marson néhány izgalmas képződmény is található. Az egyik az Olympus Mons, a Naprendszer egyik leghatalmasabb tűzhányója. A másik a Valles Marineris szurdokrendszere, amely több mint 4800 km hosszú, és a 8 km-es mélységet is eléri. Óriási porviharok is keletkezhetnek, melyek hónapokig eltarthatnak és az egész bolygóra kiterjedhetnek. Az Olympus Mons 23 km magasan emelkedik a marsi tájak fölé. Csúcsán egy 80 km átmérőjű beszakadt kürtő, ún. kaldéra van, mivel vulkán, de már kialudt. Ha Magyarország fölé helyeznénk, az egész területét lefedné országunknak. Magassága majdnem 3-szor annyi, mint a Föld legmagasabb hegycsúcsa, a Mont Everest. 

Forrás: Pixabay

A Marsnak van két krumpli formájú holdja is: a Phobos és a Deimos. Mindkettő kisbolygó lehetett, melyeket befogott a Mars tömegvonzása. A Phobos a nagyobb — 28 km hosszúságú — és közelebb is van a vörös bolygóhoz. Szilárd felszíne kráterekkel borított, közöttük a legnagyobb a Stickney-kráter, amey a Föld holdjának a felszíne 10%-át fedi be. A Phobos gyorsan megkerüli a Marsot, egy fordulathoz 7 óra 39 perc kell. A Deimos csak 16 km hosszú és a felszíne is sokkal simább. Bolygóját 30 óránként kerüli meg.

A Szerző

Összefoglalva, tények röviden:
– Helyzete: a 4. a Naptól számítva
– Naptól mért átlagos távolsága: 228 millió km
– Tengelyforgási idő: 24 óra 37 perc
– Nap körüli keringési idő (az év hossza): 687 nap
– Pályamenti sebesség: 86 870 km/óra
– Átmérő: 6787 km
– Tengelyferdeség: 25, 2 fok
– Tömeg: 1/10-e a Földének
– Felszíni gyorsulás (tömegvonzás): 2/5-e a földinek, egy 45 kg-os földlakó a Marson 18 kg-ot nyomna
– Átlagos felszíni hőmérséklet: -63 Celsius fok
– A légkör fő összetevői: főként szén-dioxid
-Holdjai: 2
-Gyűrűi: nincsenek


FORRÁS:

Time Life Nagyító: A világegyetem könyvkötet
Simon Tamás (szerkesztő)
A világegyetem
Time Life Nagyító Park Kiadó, Budapest, 1999
ISBN: 9635303947
Fordította: Szabó Attila

Van-e új a Mars alatt?

Szerző: Kovács Gergő

2018. november 26-án leszállt a Marsra a NASA InSight nevű szondája, hogy műszereivel mélyebb betekintést nyújtson a vörös bolygó geológiájába, belső felépítésébe, szeizmológiai jellemzőibe. Az azóta eltelt csaknem két esztendő alatt temérdek új információhoz jutottak a tudósok, melyet a NASA a napokban publikált.

Az InSight szeizmométere, a SEIS (Seismic Experiment for Interior Structure – SEIS) eddig 733 marsrengést érzékelt. Ezek a mérések lehetővé teszik a tudósok számára, hogy belőlük az égitest (Föld, Hold vagy épp a Mars) belső szerkezetére következtessenek. Földünk belső szerkezetének tanulmányozása óta tudjuk, hogy a rengéshullámok egy réteghatárhoz érve irányt változtatva terjednek tovább. A geológusok ennek ismeretében jöttek rá arra, hogy bolygónk több, eltérő fizikai tulajdonságú gömbhéjból épül fel.

Az InSight mérései során fény derült arra, hogy a Mars kérge vékonyabb, mint eddig gondolták, továbbá kettő vagy három alrétegből épülhet fel, vastagsága 20 és 30 kilométer között lehet. A vörös bolygó belső szerkezetére mindez idáig csupán a bolygó méretéből tömegéből következtethettek.

Az InSight mérései pontosították ismereteinket a Mars belső felépítéséről.
Kép forrása: S. Cottaar/P. Koelemeijer/J. Winterbourne/NASA

A legfontosabb eredmény azonban az, hogy a Mars magja még folyékony lehet, a hőfeláramlás (és így a mágneses dinamó hatás) azonban már leállt vagy csak nagyon gyenge, a Mars vastag köpenye pedig egyfajta szigetelőrétegként működik, megakadályozva, a konvekció és így a mágneses mező kialakulását.

Forrás: NASA, SEIS InSight

Város-méretű kisbolygók sorozták meg a Földet

Szerző: Rezsabek Nándor

A kutatók eddig is tisztában voltak azzal, hogy a földtörténet korai időszakában planétánkat óriási méretű kisbolygók bombázták, de egy friss elemzés szerint ennek mértéke tízszerese volt a korábban feltételezettnél – számol be a Phys.org. Ez a 2,5-3,5 milliárd évvel ezelőtti, átlagosan 15 millió évente jelentkező becsapódássorozat a dinoszauruszokat kipusztító impakt eseményhez hasonló nagyságrendű volt. Ennek során egy-egy ütköző aszteroida mérete meghaladta egy városét, sőt elérhette egy megyéét is. A kutatók azt is vizsgálták, hogy mindez milyen hatással volt Föld kőzetburkának geokémiájára. Eddigi eredményeiket a Goldschmidt Geokémiai Konferencián ismertették.

Az ősi Föld környezeti viszonyai összehasonlíthatatlanul mostohábbak voltak a ma ismert anyabolygóhoz képest. A tudósok úgy gondolják, hogy planétánkat óriási számban bombázták 10 km-t is meghaladó méretű kisbolygók, és ez komoly hatással volt a felszín kémiai összetételre, valamint jelentősen befolyásolta az élet elterjedését. Akár egyetlen ilyen becsapódás is a 65 millió éve a dínókat a föld színéről eltörlő Chicxulub-eseménnyel összehasonlítható nagyságrendű volt. Tegyük azonban hozzá, hogy az ős-Föld viszonyai jelentősen különbözték a Chicxulub-korabelitől, így az impakt események hatásai is igen eltérőek voltak.

Fotó: SwRI/Simone Marchi, Dan Durda

A hasonló típusú becsapódási események során keletkezett kráterek láthatóak a Holdon, valamint a kőzetbolygókon, a Földön azonban a légkörrel összefüggő időjárási eróziós folyamatok, valamint a lemeztektonika eltüntette a szemünk elől ezen az ősi asztroblémek létezésének kézzel fogható bizonyítékait. Mindezek ellenére az ősi becsapódások „visszhangja” ott van beépülve a legrégebbi földi kőzetekben apró gömböcskék, ún. szferulák formájában. Egy-egy hatalmas becsapódás során a megolvadó és kirepülő anyag a légkörben lehült, majd a földre visszahullva üvegszerű formában épült be az alapkőzetbe. Minél nagyobb volt egy impakt esemény energiája, az erre utaló részecskék annál távolabbi helyeken is fellelhetők geológiai jelző-réteget képezve.

Dr. Simone Marchi, a Colorado állambeli Délnyugati Kutatóintézet munkatársa vezetésével most az egykori becsapódásoknak új modelljét dolgozták ki, majd ennek „működőképességét” az ősi szferula-rétegek adatainak statisztikai elemzése során „tesztelték”. Arra jutottak, hogy a Föld korai időszakára jellemző meteoritbombázás eddigi modelljei jelentősen alábecsülték a becsapódási események számát, amelynek bizonyítékait azonban az impaktitrétegek megőriztek. A becsapódások fluxusa egy tízszeres faktor bevezetését indokolja a 2,5-3,5 milliárd évvel ezelőtti jóval gyakoribb impakt eseményszám miatt. Mindez azt jelenti tehát, hogy ebben a korai földtörténeti időszakban egy-egy Chicxulub-jellegű esemény 15 millió éves gyakorisággal is bekövetkezhetett.

A kutató elmondta, hogy minél jobban megismerjük az ősi Föld viszonyait, annál jobban megértjük azt, hogy a kozmikus ütközések olyanok, mint elefánt a porcelánboltban. Energiájuk a földkéreg és a földi légkör fejlődéstörténetét alapvetően befolyásolta, ugyanakkor számuk és nagyságrendjük pontos ismeretének hiányában hatásukról a modellek gyakorta megfeledkeznek.

Példának okáért most már azt is vizsgálják, hogy a becsapódásoknak milyen szerepe volt a légkör oxigéntartalmának változásában, a légkör „evolúciójában”. A kutatási eredmények azt mutatják, hogy az intenzív becsapódások időszakában a légköri oxigén aránya drámain ingadozott. Tekintettel a gáznak a Föld fejlődéstörténetében, különösen pedig az élet fejlődésében játszott fontosságára, ez az összefüggés a további vizsgálatokat különösen fontossá teszi. Dr. Simone Marchi szerint ez jelenti majd a kutatások következő szakaszát.

Az arizonai Barringer-kráter. Fotó: Wikimedia Commons

Dr. Rosalie Tostevin, a Fokvárosi Egyetem kutatójának véleménye szerint ezek a nagyenergiájú becsapódások nyilvánvalóan hatalmas pusztítást végeztek, ugyanakkor erről az időszakról már csak minimális mennyiségű földi kőzetanyag tanúskodik. Ebből következtében kevés a közvetlen bizonyíték, a környezeti és ökológiai hatások pedig csak becsülhetők. Éppen ezért a Dr. Simone Marchi által felvázolt modell nagymértékben segíthet jobban megérteni a becsapódások számát és nagyságrendjét.

A kémiai markerek egyes értelmezése szerint az oxigénszint 2,5 milliárd évvel ezelőtt megkezdődött folyamatos emelkedése előtt is már az őslégkör tartalmazta az életadó gázt – mindez azonban továbbra is vitára ad okot a témával foglalkozó tudományos közösségben. Eddig ennek kérdéskörét jellemzően a Föld, mint égitest, valamint az élet fejlődése alapján értelmezték – most az erre vonatkozó vizsgálatok tehát kiegészültek a Földön kívüli (extraterresztrikus) erők hatásainak figyelembevételével.