A 66 millió éve történt becsapódásnak köszönhetjük az amazóniai esőerdőt

Szerző: Ivanics-Rieger Klaudia

Egy nemrég megjelent tanulmány szerint a fosszilizálódott pollenek és levelek kimutatták, hogy az aszteroida, mely a dinoszauruszok kipusztulását okozta, egyúttal át is formálta Dél-Amerika növénytársulását, hogy így létrejöjjön a bolygó legnagyobb esőerdője. A tanulmányt Carlos Jaramillo, a panamai Smithsonian Trópusi Kutatóintézet paleobiológusa és Bonnie Jacobs, a Déli Metodista Egyetem paleobiológusa írta. Jarmillo kolumbiai származású és kifejezetten hazája trópusi erdőinek eredetét akarta megvizsgálni. A dinoszauruszok és fosszíliák rajongóinak körében igen jól ismert az aszteroida-becsapódás, mely 66 millió évvel ezelőtt kipusztította a dinoszauruszokat, mint amilyen a Tyrannosaurus rex. De azt gyakran figyelmen kívül hagyják, hogy a becsapódás más ökoszisztémákat is eltörölt. Egy új tanulmány kimutatta azonban, hogy ezen események egy másik, különösen fontos eredményhez vezettek, méghozzá az amazóniai esőerdő kialakulása, ami a bolygó leglátványosabb és legváltozatosabb környezete. A tanulmányhoz több tízezernyi növényfosszíliát elemeztek. Kimutatták, hogy a kihalás egyben egy hatalmas újraindító esemény is volt a neotropikus ökoszisztémák számára: teljesen új ösvényre terelte az evolúciójukat, ami a mai változatos és látványos ökoszisztémájához vezetett. Ezen felismerés alapvető előrelépést jelent a tudásban és új lendületet ad a trópusokon élő evolúciós örökség megőrzésének. Ez nagyon fontos, hiszen a terület olyan, ember által okozott fenyegetéssel áll szemben, amely hatalmas pusztításokat okoz Amazóniában. Pedig az esőerdő fajok millióinak létét alapozza meg, beleértve az emberét is. A szerzők szerint a becsapódott aszteroida evolúciós és ökológiai kihatással volt az amazóniai esőerdő kialakulására és más, kulcsfontosságú élőhelyekre az egész bolygón. A mai esőerdők tehát szerves részét képezik a földi életnek. Különösen az amazóniai játszik döntő szerepet a bolygó édesvízi körforgásának és éghajlatának szabályozásában. Sok akadémikus és amatőr kövületvadász eddig nem sok figyelmet fordított a trópusi területekre, mivel feltételezték, hogy a meleg, nedves helyek körülményei megakadályozzák a szerves anyagok megkövülését.

Késő-karbon kori megkövült páfránylevél Ohioból. Forrás: Wikipedia

Ám körülbelül 50 000 pollenszemet és 6000 fosszilizálódott levelet elemeztek 12 év alatt úgy, hogy a nulláról kellett elindulni. A vizsgálatokból kiderült, hogy az aszteroida – mely feltételezhetően az úgynevezett Baptistina-család tagja volt és már 160 millió évvel ezelőtt leszakadt a csoportjától, elszabadulva a Mars és Jupiter közti aszteroida-övezetből – bár kipusztította a dinoszauruszokat, ugyanúgy az amazóniai esőerdőt is kialakította. Ismert tény az is, hogy a becsapódás okozta hatások és annak közvetlen illetve közvetett következményei függenek a helyi viszonyoktól és a krátertől való távolságtól, amely a Yucatán félszigeten található és a Chicxulub nevet viseli.

A 66 millió évvel ezelőtt történt kihalást okozó Chixculub-kráter feltételezett becsapódási helye, a mexikói Yucatán-félsziget.
Forrás: NASA/JPL-Caltech

Az új-zélandi erdők például viszonylag sértetlenül megúszták, de a kutatóknak fogalmuk sem volt, hogy az esemény miként változtatta meg Afrika vagy Dél-Amerika trópusi esőerdőit. Ahogy ritkák a komplett csontváz kövületek, úgy egész fák sem őrződnek így meg. Jaramillo és kollégái ezért vizsgálták a levélmaradványokat, sőt, a mikrofosszíliának számító polleneket, a virágport. Ezek sajnos eléggé alulértékeltek, hisz nem olyan látványosak, mint egy dinoszaurusz. Pedig ugyanúgy rengeteg fontos információt hordoznak, mint a csontok. Például szépen fel lehet mérni belőle, hogy milyenek volt az adott kor növénytársulásai. Jaramillo és munkatársai egész Kolumbiában mintegy 53 helyszínt tanulmányoztak. Olyan helyeket kerestek, melyek egyrészt közvetlenül a becsapódás előtt illetve a következő tízmillió évben, a paleogén időszakban keletkeztek. Itt találták a rengeteg fosszilis levelet és pollent, melyek alapján már le tudták írni azokat a növényeket, melyektől származtak. Friss, ettől különálló tanulmányok már kimutatták, hogy a több fényt kapó leveleknek nagyobb a vénasűrűsége valamint a 13-as izotóp aránya. A falevelek formája az éghajlatra vagy annak változására is utal: a lekerekített szélűek a meleg, a fogas szélűek illetve az osztott levelek a hidegebb éghajlatokra jellemzők inkább. A csapadékot pedig a levelek mérete jelzi: a nagyméretű levelek több csapadékra utalhatnak. A kutatók a kövületek ezeket a jellemzőket tanulmányozták, hogy bemutassák a becsapódás utáni állapotokat. Más tanulmányokból szintén ismertek a következő tények: a becsapódás után a környezeti hatások miatt elindult nagytömegű fajkipusztulás először a gombák elszaporodását okozta, majd az olyan páfrányok vették át az uralmat, mint amilyenek a pajzsikafélék. Nagyobb erdők csak ezután jelentek meg. Ezen fák nagyrészét hüvelyesek alkották, melyek termése rengeteg tápanyagot tartalmazott. Ez az addig inkább mindenevő emlősök (jórészt rágcsálófélék) táplálkozását is átalakította, illetve segített az emlősök gyors elterjedésében és a különböző fajok kialakulásában. Tehát a becsapódás utáni új növénytársulások létrejötte elősegítette azt a fejlődési utat, mely végül az ember kialakulásához vezetett. A kataklizmikus megsemmisülésből főnixmadár-szerűen új élet sarjadt. A jelen kutatásból a tudósok ezt Dél-Amerikára is le tudták vetíteni. A becsapódás előtt ezt a régiót főként tűlevelű növények jellemezték, a nyitott lombkorona alatt a páfrányoknak is lehetőségük volt a burjánzásra. A dinoszauruszok valószínűleg kulcsfontosságú szerepet játszottak ezen erdők fenntartásában, például a növényzet kitisztításával, a fák ledöntésével. Az aszteroida becsapódásával azonban ez az ökoszisztéma egy pillanat alatt és visszavonhatatlanul megváltozott. A kataklizma után a valószínűleg több évig tartó tüzek elnyelték Dél-Amerika déli erdőit. A szerzők számításai szerint számos állat mellett a trópusi növényfajok mintegy negyvenöt százaléka is eltűnt a területről. Hatmillió évbe telt, mire az erdők egyáltalán visszanyerték a biodiverzitás azon szintjét, amely a becsapódás előtt volt. Ám a lassan visszanövő fajok teljesen mások voltak, mint korábban. A megjelenő hüvelyesek olyan növények, melyek szimbiotikus kapcsolatot alakítanak ki azon baktériumokkal, melyek lehetővé teszik számukra a nitrogén megkötését, ezáltal gazdagították a korábban tápanyagokban szegény talajt. Ez és a kataklizma után keletkező hamu foszforja lehetővé tette, hogy a hüvelyesek mellett más virágos növények is kifejlődjenek, így kiszorítva a tűlevelűeket. Ezen fajok már sűrű lombkoronát alakítottak ki, így versenyezniük kellett a fényért. Ezáltal alakult ki a ma ismert, több szintből álló amazóniai esőerdő.


Forrás:
Rachel Nuwel – The asteroid that killed the dinosaurs created the Amazon rain forest (Scientific American 2021. ápr.1.)
A cikk az eredeti, angol nyelvű cikk felhasználásával készült.

Megfogható világok

Szerző: Ivanics Ferenc, Bakonyi Csillagászati Egyesület

Egyesületünk mindig is arra törekedett, hogy bárki számára közelebb hozza, élményszerűvé és kézzelfoghatóvá tegye a csillagászat és az űrkutatás világát. Már-már vesszőparipánkká vált, hogy a tudományos ismeretterjesztés interaktív formában mindenkinek elérhetővé váljon. Mégis, vannak olyan emberek, akik esetén elsőre lehetetlennek tűnik mindez. Ők a látássérültek. A mi fejünkben azonban már három évvel ezelőtt megfogant egy gondolat: szerettük volna valamiképpen az ő számukra is elérhetővé tenni az Univerzumot. Mind a mai napig, ha valaki a csillagászati ismeretterjesztésre gondol, akkor általában egy távcsöves bemutató képe villan fel lelki szemei előtt. Egy ilyen bemutató azonban, ahol elsődlegesen a szemünket használjuk, egy vak ember számára nem releváns. Egyesületünk már az első pillanattól kezdve azon volt, hogy a hagyományos, távcsöves ismeretterjesztés mellett, azzal egyenrangú programokat dolgozzon ki. Programjainknak már indulásunktól kezdve részei a kézzelfogható makettek, modellek és kőzetek. Ebből kiindulva hamar meg is született az ötlet: kézzelfoghatóvá kell tenni a világűrt, hiszen a látássérültek leginkább a kezüket, a tapintást használják tájékozódásra. Fő eszközünk pedig a nemrég már hazánkban is elterjedt és az átlagember számára elérhetővé vált 3D nyomtatás lett. Azonban az ötlet hosszú éveken keresztül csak álom maradt, mivel más programokra koncentráltunk. Tavaly, az év második felében azonban végre elkezdtük ennek az új és formabontó, részben kísérleti programnak a megvalósítását.

Mivel egy vidéki, nonprofit egyesület vagyunk minimális erőforrásokkal, először is támogatókra, szponzorokra volt szükség, hogy álmunk valóra váljon. Szerencsére nem kellett messzire mennünk az ajkai Schwa-Medico, illetve a budapesti Thermo Épgép Kft. egyből projektünk mellé álltak anyagi támogatásukkal. Ezután 2020 decemberében végre belevághattunk a program gyakorlati megvalósításába, ami korántsem volt olyan könnyű, mint azt elsőre gondoltuk.

A fő lépés természetesen a tapintható makettek és modellek legyártása volt. Ennek első elemeként kidolgoztunk egy tematikát, ami részletesen bemutatja saját bolygórendszerünket. Jelenlegi programunkban a Naprendszer égitesteit szándékozunk bemutatni. Végül 46 db égitestet választottunk ki nyomtatásra, azok esetenként több érdekes felszíni formájával (ismertebb kráterek, vulkánok, kanyonok, stb.) egyetemben. Így a 3D nyomtatással előállított modellek száma összesen 77 darab lett. A 3D nyomtatás során gyártott modelleket az interneten ingyenesen elérhető adatbázisokból és a NASA honlapjáról töltöttük le. A 3D nyomtatott elemek mellé 9 darab egyedileg készített modell került. Az összesen 86 modell mellé 3 darab valódi meteoritot és egy becsapódások során képződő úgynevezett tektitet is adtunk. Ezen égi kövek már régóta részét képezik bemutatóinknak, ezért semmiképp sem maradhattak ki. A bemutatóhoz egyrészt egy kőmeteoritot választottunk, másrészt két vasmeteoritot, így a főbb típusok képviselve vannak.

A vasmeteoritok közül az egyik az argentin Campo del Cielo egy 3,5 kg-os példánya. A másik az amerikai Canyon Diablo. Utóbbi azért került a gyűjteménybe, mert 3D nyomtatással elkészíttettük mellé a főtömeg által vájt arizonai Barringer-krátert. A vasmeteoritoknak nemcsak a tapintásuk vagy a súlyuk, hanem a szaguk is érdekes, ezért is kerültek bele a tematikába. Egy negyedik kőzet is része a programnak, egy metamorf kőzet, azon belül egy tektit. Rá a kráterképződés bemutatásánál „lesz szükség”. Itt pedig meg kell említenünk, hogy nem minden modellünk született meg 3D nyomtatásból. Egyes makettek egyedi módon, kézzel készültek, ezeket mind Surányi Zoltán tagtársunk állította elő. Két üstökös-modell és az aszteroida-becsapódás folyamatát bemutató hat tábla került ki a kezei közül. Ezek mellett évekkel ezelőtt ajándékba kaptunk egy gittből készült holdfelszínt. Ez azt a területet ábrázolja az Esők Tengerén, ahová a Luna-2 űreszköz 1959-ben becsapódott, vagyis itt érte el először ember alkotta tárgy egy idegen égitest felszínét. A holdfelszín-makettet, mely az egyik legnagyobb a gyűjteményünkben, Vértes Ernő amatőrcsillagász készítette 1974-ben az egykori veszprémi csillagászati szakkör részére. A modell tehát csaknem ötven éves, készítője nem is sejthette, hogy egyszer egy ilyen, az országban egyedi és első programban kap majd helyet. A makettet Surányi Zoltán tagunk újította fel, egy hónapig dolgozva rajta.

A többi makett viszont már 3D nyomtatással készült. Bár egyesületünk is rendelkezik egy ilyen speciális nyomtatóval, egyértelmű volt, hogy az kevés, ezért más segítség után kellett néznünk. Szerencsére az ismerősi körben több embert is találtunk, aki rendelkezik 3D nyomtatóval, például Lisztmaier Gábor. Ők a kisebb maketteket készítették el. Voltak azonban nagyméretű illetve olyan makettek, melyek sok részből álltak, így „házilag” nem lehet őket előállítani. Emellett hamar felmerültek problémák az otthoni nyomtatáskor, mind a magunk, mind a többiek részéről: a nyomatók a fokozott igénybevétel miatt többször felmondták a szolgálatot, emiatt csúszott is a program, bár erre fel voltunk készülve. Szerencsére a nagyobb makettek előállításában segítséget kaptunk a VARINEX Zrt-től, akik ingyen, minden munkatársukat bevonva dolgoztak makettjeinken. Így ők is szponzorjainkká váltak. Az ő kezük alól került ki egy méretarányos naprendszer-modell, egy nagyméretű Tycho-kráter és egy vetületi földtérkép, mely több mint harminc négyzetlapból áll (a földtérkép összeszerelve 1,4 m x 0,7 m).

Ezeket a nyomtatott modelleket aztán mind le kellett festeni. A munka oroszlánrészét Ivanics-Rieger Klaudia végezte. Joggal merülhet fel, hogy miért festjük le a modelleket, ha egyszer vakok számára készültek? Ennek több oka is van. Egyrészt, más programjainkban is szeretnénk felhasználni őket. Másrészt a festés információkkal lát el minket az adott felszínen kitapintható objektumokról. Harmadrészt látók is részt vesznek majd a Tapintható Univerzum programján. Negyedszer pedig a vakok és gyengénlátók közé a színvakok is beletartoznak, nekik pedig, még ha nem is ismerik fel a pontos színeket, azok fontosak a kontrasztok érzékeléshez. Néhány objektum lefestése egyszerű volt: a Hold vagy a Mars esetén elég volt egy-egy adott színnel, szürkével vagy vörössel dolgozni. De egyes bolygók, például a Jupiter már nem volt ilyen könnyű, a vetületi földtérkép festése pedig csaknem egy hetet vett igénybe.

A festés után a makettek fakeretet, illetve állványt kaptak, ezeket ismét Surányi Zoltán készítette el. Ezekre a keretekre kerülnek majd az információs panelek.

A sok makettet természetesen tárolni és szállítani kell valamiben. Ebben másik egyesületi tagunktól, Vágó Gábortól kaptunk segítséget, aki beszerezte a tárolóeszközöket, illetve biztosította a makettek védőcsomagolását. Közben rengeteget gondolkodtunk azon, hogy a program konkrétan hogyan fog megvalósulni. Végül abban egyeztünk meg, hogy a legjobb egy hanganyag összeállítása lesz. Ehhez először írtunk hetvenhét darab rövid, általában egy perc alatt elmondható szócikket az adott makettről, a legfontosabb információkkal. Ezeket a szócikkeket egyesületi tagunk, Nagy Richárd rögzítette hanganyag formájában. Rengeteg munka volt a csaknem nyolcvan szócikk felmondása, amit néha többször is meg kellett tenni, mire végre elnyerték végső formájukat. A hanganyag a honlapunkról lesz elérhető kétféle módon: QR-kód illetve úgynevezett NFC chip formájában, melyeket okostelefon segítségével lehet majd aktiválni, meghallgatni. A chipek beszerzését illetve a szükséges informatikai hátteret egyesületünk informatikusa, Csánitz László biztosította.

A program azonban nem jöhetett volna létre a Vakok és Gyengénlátók Veszprém Megyei Egyesülete nélkül. Először is rengeteg ötletet és jó tanácsot kaptunk a program megvalósításával kapcsolatban az egyesület elnökétől, Csehné Huszics Mártától. Emellett szükségünk volt Braille-írással nyomtatott elnevezésekre is, az összes, tehát mind a 90 modellhez. Ezeket Lebcelterné Veiland Orsolya készítette el számunkra. Ezek a szövegek a chipekkel és QR-kódokkal együtt a makettek keretein, tartóin kapnak majd helyet.

A továbbiakban hosszú és folyamatos együttműködést tervezünk a Vakok és Gyengénlátók Veszprém Megyei Egyesületével. A programot először náluk mutatjuk majd be, de ez inkább lesz egy baráti találkozó és egy kísérleti jellegű teszt. Miután pedig tovább finomítottunk rajta, reméljük, hogy rengeteg helyre eljuthatunk vele, hogy elvigyük a tapintható Univerzumot vakoknak és látóknak egyaránt.

Több mint fél évet töltöttünk e programunk előkészítésével. Egyesületünk minden tagja hozzátett valamit azért, hogy létrejöhessen valami igazán érdekes. A munka során felmerült sok-sok nehézség mellett hihetetlen erőt adott számunkra azoknak a cégeknek és magánembereknek az önzetlen támogatása, akik velünk együtt egy újfajta élményt szeretnének ajándékozni azoknak az embertársainknak, akiknek, nincs lehetőségük megszemlélni a kozmosz csodáit. Az új interaktív programunk még nem debütált ugyan, azonban a munkánkat segítő szakemberek (mondhatom, hogy a barátaink), cégek és munkatársaik elsöprő lelkesedésén keresztül már most sok örömet hozott számunkra. Majdnem két tucat ember, három cég, ismerve vagy ismeretlenül, de azért dolgozott össze, hogy az eltérő érzékeléssel élő társaink mosolyát vagy áhítatát figyelve tanúi legyünk annak, hogy ezek a távoli világok miképp rajzolódnak ki érzékelésük vásznán…

Ez lesz az a pont, amikor munkánk elnyeri valódi értelmét!
Köszönjük támogatóinknak, hogy hittek a projekt céljában és értékében!

Bolygós rövidhírek: érkeznek a Lyridák

Szerző: Balázs Gábor

A leglátványosabb meteorrajok kétségkívül a Perseidák és a Geminidák, amit leginkább az óránként hulló meteorok magas száma okoz. Noha az előbbiek idején sűrűn potyognak a hullócsillagok, van rajtuk kívül is megannyi meteorraj, amik szintén figyelmet érdemelnek.

Ide sorolható az április 22-én, csütörtökön érkező, ebben az évben az első számottevő meteorraj, a Lyridák. Nevüket az ún. radiáns magyarázza. Ez az a pont, melyből a meteorok érkezni látszanak. Ennek elhelyezkedése adja meg a rajok nevét. Esetünkben a Lant (Lyra) csillagkép terültén található ez a pont, innen ered a Lyridák megnevezés.

A Lyridák radiánsa. Forrás: Stellarium

Ugyebár szinte minden meteorraj egy üstököshöz kötődik, így nincs másképp itt sem. Ennek a rajnak a szülőüstököse a (C/1861 G1) Thatcher üstökös. A kométa utoljára 1861-ben közelítette meg Napunkat, és 415 éves keringési periódusával számolva legközelebb 2276-ban fog visszatérni. Ekkor szép meteoresőt okozhat. A Lyridák egyébként a legrégebben feljegyzett meteorraj. Kr. e. 687-ben már Kínában írtak róluk.

Áttérve megfigyelésükre, aktivitásukra április 16. és 25. között lehet számítani, de a raj maximuma lehet mindenki számára érdekesebb. A jeles időpont 22-én hajnalban lesz, amikor óránként 7-8 darab meteort is láthatunk, de az ezt követő egy-két napban is érdemes próbálkozni megpillantásukkal. Ha szerencsénk van, akár még egy-egy tűzgömb is feltűnhet.

Egy fényes, -7 magnitúdós tűzgömb a szerző felvételén

2021-ben derült idő esetén sem lesznek a legkedvezőbbek a körülmények, ugyanis égi kísérőnk a maga 67%-os fázisával fogja beragyogni az éjszakai égboltot. Ennek okán a megfigyelhető tagok reális száma az óránkénti 5 körül alakulhat. Aki pedig kimerészkedik néhány meteort megcsodálni, az izzó kozmikus porszemcséken kívül még a Tejút egyre magasabbra emelkedő csillagösvényét, majd a Szaturnusz és a Jupiter párosát is megfigyelheti.


Forrás: NASA

Vulkánok és a global dimming

Szerző: Kovács Gergő

2021. április 9-én kitört a Karibi-térséghez, azon belül a Szél felőli szigetekhez tartozó Saint Vincent sziget La Soufrière nevű vulkánja, mely kitörés a XXI. század egyik legnagyobb vulkáni erupcióját okozta.

A La Soufriére kitörése. Forrás: RCI Martinique – YouTube CC BY 3.0

A kitörés jelentős mennyiségű vulkáni port juttatott a légkörbe, az ún. vulkánkitörési index (VEI) szerint a robbanásos kitörés VEI 4-es erősségű, mely még ha nem jelentős, de mindenképpen kimutatható mennyiségű, 0,4-0,6 Tg (teragram=1012 gramm) mennyiségű kén-dioxidot juttatott a légkörbe. Ha a kitörés VEI 5-ös vagy annál erősebb lenne, már elegendő mennyiségű aeroszolt juttatna a sztratoszférába ahhoz, hogy komolyabb mértékben befolyásolni tudja a Föld klímáját.

A VEI-index egyes fokozatainak megfelelő kitörések.
A La Soufriére-ből a légkörbe jutott vulkáni anyag. (NASA)

A kitörés óta körülbelül 20 ezer embert kellett evakuálni a szigetről. Az utcákat, házakat vastag por fedi, a vízellátás és az elektromos áram-ellátás akadozik. A nagy mennyiségű vulkanikus por és gáz mellett a tűzhányóból kiszabaduló rendkívül forró törmelékzuhatag, ún. piroklaszt-ár is óriási pusztítást okozott. A védekezés sikerét jól jelzi azonban, hogy eddig senki nem vesztette életét a szigeten.

A “global dimming” (mely fogalom magyar fordítására nem vállalkozom) a légkörbe jutó aeroszolrészecskék (vulkáni por, kén-dioxid, füst, korom, kondenzcsíkok stb.) napsugárzás-blokkoló hatása, melynek következtében a felszíni hőmérséklet kimutatható mértékben csökken, függően a légkörbe jutó részecskék mennyiségétől, illetve attól, hogy a troposzférába vagy feljebb, a sztratoszférába kerülnek, illetve, hogy az Egyenlítő környékéről terjednek szét a légkörben (ekkor hatékonyabb a terjedésük) vagy nem.

Ez a felszínre érkező napsugárzás mennyisége mellett képes módosítani az esőzések térbeli eloszlását, árvizeket vagy szárazságokat (így éhínségeket is) okozva. A történelem során számos esetben volt példa a global dimming jelentős klímaformáló hatására.

1815-ben a Tambora VEI 7-es erősségű kitörése a rákövetkező évre elhozta “a nyár nélküli év“-et: júniusban Európa és Észak-Amerika szerte havazott, jelentős terménypusztulást és éhínséget okozva. A sors iróniája, hogy ebben az évben, ezen időjárási anomáia hatására írta Mary Shelley a Frankensteint.

Ki gondolta volna elsőre, hogy összefüggés van kettejük között? (Wikipedia nyomán)

A 2001. szeptember 11-ei terrorcselekmény után több napra is a földre parancsolták az USA összes polgári repülőgépét, a meteorológusok példátlan hőmérséklet-növekedést figyeltek meg az országban, melyet a kutatók a kondenzcsíkoknak, illetve azok hiányának tudtak be. Egy friss kutatás szerint hazánkban az éves napenergia-termelésben körülbelül 1-1,3%-nyi csökkenést okoznak a kondenzcsíkok.

Kondenzcsíkok DNy-USA fölött. (MODIS)

Láthatjuk hát, hogy ezen jelenségnek igen komoly klíma- és történelemformáló hatásai is lehetnek. Nem véletlen, hogy a global dimming az egyik potenciális jelöltje az éghajlat lehetséges mesterséges szabályozásának, a geoengineeringnek, ezen belül is az ún. napsugárzás-menedzsmentnek, mely célja a földfelszínre érkező napsugárzás csökkentése, többek között különféle aeroszolok használatával (por, kén-dioxid, titán-dioxid).


Források:
[1] [2] [3] [4]

Bolygós rövidhírek: Földünk nyomokban Theiát tartalmazhat

Szerző: Kovács Gergő

Az Arizonai Állami Egyetem egy kutatócsoportja szerint a Földdel körülbelül 4,5 milliárd évvel ezelőtt összeütközött, majd vele eggyé olvadt Theia bolygócsíra maradványai nyomokban még mindig fellelhetők Földünk köpenyanyagában – számol be a Phys.org.

A Theia összeütközése a Földdel, létrehozva a Holdat és hátrahagyva két anyagbuborékot a Föld köpenyében. Forrás: Li et al.

A legelfogadottabb elmélet szerint Holdunk ekkor keletkezett, a Föld és Theia összeütközésekor kidobódott anyagfelhőből, a két égitest darabjaiból. Arról azonban még nincs egyetértés, fellelhetők-e a bolygócsíra darabjai a Föld belsejében. Az arizonai kutatócsapat által felállított új elméletben a Theia maradványai két zónában koncentrálódtak Földünkben, ezek az ún. nagy alacsony nyírósebességű tartományok (large low-shear-velocity provinces, LLSVPs), az afrikai kontinens és a Csendes-óceán medencéje alatt. A tudósok évek óta tanulmányozzák az LLSVP-ket, melyekben a szeizmikus hullámok lelassulnak, azt sugallva, hogy anyaguk sűrűbb, mint az őket körülvevő köpenyanyag.

Magma felgyülemlés okozza a földrengéseket – ez fog történni, ha kitör a vulkán

Az Izland Dél-nyugati csücskében található Reykjanes-félszigeten napok óta megnövekedett szeizmikus tevékenység zajlik. Habár Izlandon a földrengések mindennaposak, az utóbbi időszakban jelentősen megemelkedett a rengések száma és erőssége.

A földrengések elhelyezkedése és erőssége a Reykjanes-félszigeten. Zöld csillag jelöli a 3-as fokozatúnál erősebb rengéseket

Pár nappal ezelőttig a szakértők álláspontja az volt, hogy a február 24-én kezdődött aktivitás nem magmatevékenység következménye, hanem a kőzetlemezek elmozdulása okozza azt. Március elsején azonban a műholdas felvételek elemzése során ennek az ellenkezője bizonyosodott be.

Úgy tűnik, hogy a közelmúlt eseményei a tavaly kezdődött magmafegyülemlés folytatása. Tavaly ennél jóval kisebb szeizmikus aktivitás miatt hirdettek sárga készültségi fokozatot a térségben.

A friss GPS mérési eredmények szerint a talajfelszín mintegy 30 centimétert emelkedett az elmúlt napok földrengései hatására. A jelek arra utalnak, hogy körülbelül 6 km mélyen mozgolódik a magma és utat keres magának a felszín felé.

Ki fog törni a vulkán?

Itt nem egy darab meglévő vulkánról van szó, hanem egy ezeréves lávamezőről, ahol hasadékok nyílhatnak meg, melyekből forró magma áramlik ki. Habár a közeljövőben bekövetkező lávakitörés valószínűsége egyre növekszik, a szakértők továbbra is óvatosan fogalmaznak. Senki nem képes megjósolni biztosan, hogy mi fog történni és mikor, csupán valószínűségről beszélhetünk.

Hamarosan biztosan felszínre kerül a láva, de azt senki sem tudja, hogy pontosan mikor. A “hamarosan” geológiai léptékben mérve akár 1-200 évet is jelenthet, jegyezte meg a RÚV hírportálnak Þorvaldur Þórðarson vulkanológus.

Jelenleg három lehetséges forgatókönyv van:

  • A szeizmikus aktivitás elcsendesedik leáll minden további következmény nélkül
  • A magma felgyülemlés erősebb szeizmikus aktivitást idéz elő, amely nagyobb (akár 6.5-ös erősségű) földrengéshez is vezethet
  • A magma benyomulás folytatódik és
    • felszakítva a kérget a felszínre ömlik, vagy
    • a felszín alatt megszilárdul
A talajfelszín mintegy 30 cm-t emelkedett a kérdéses területen

Mi fog történni, ha kitör a vulkán?

Szakértők szerint az esetleges vulkánkitörés nem fog emberéletet fenyegetni. A terület geológiai tulajdonságai olyanok, hogy a lávakitörés nem járna robbanással és hamu kilöveléssel, hanem ún. effuzív kiömlés várható. Ez a típusú kitörés lassan folyó lávát produkál.

A kitörés várhatóan egy-két hétig is eltarthat, de nem fogja fenyegetni az utakat, épületeket, lakott területeket. Mindazonáltal a felszabaduló gázok okozhatnak kellemetlenséget, vagy akár veszélyt is jelenthetnek az arra érzékenyek számára, így egy esetleges kitörés esetén kiemelten fogják figyelni a szélirányt és a gázok terjedését.

Veszélyben van a lakosság?

Habár a kitörés helyszíne meglehetősen közel lenne a nemzetközi repülőtérhez, a híres Blue Lagoon fürdőhöz és egy-két kisebb településhez, becslések szerint a láva nem fenyegetne közvetlenül egyetlen települést sem.

Az alábbi képen lilával jelölték a láva várható folyási útvonalát. Két település van a képen: jobbra fent látható Hafnarfjördur, balra lent pedig Vogar.

Forrás: helloizland.hu

A világ szemtanús hullású meteoritjainak szezonális eloszlása

Szerző: Kereszty Zsolt

Az első szemtanús hullású meteorit amiről hiteles és a szakma által elfogadott bizonyíték maradt fent,az 1498-as francia Ensisheim LL6 kondrit meteorit. Azóta több, mint 1200 db ilyet tart nyilván a meteoritika tudománya.

De vajon ezek az évben egyenletesen elosztva hullanak vagy van valamilyen szezonális hatás, esetleg különleges minta? Ha statisztikailag hónapokra bontva megnézzük az 1498-tól 2020-ig hullott szemtanús hullású meteoritok havi eloszlását, akkor azt láthatjuk, hogy nagyjából minden hónapra jutott 70-80 db hullás. Lásd 1. táblázat. Ebből kissé kiemelkedik egy nyári június-júliusi kissé kiemelkedő csúcs, április-május illetve augusztus-szeptember is produkált 100-110 db környékén. De február is 100 felett van.

Ha egy olyan bontást készítünk, amibe csak a modern tűzgömb-kamerás időszakot emeljük be (2000 – 2020 évek), akkor bár hasonló az eloszlás de két szignifikáns csúcs kiemelkedik ezek közül. A nyár, különösen július jelentősen kiugrik, ugyanakkor megfigyelhető egy tél végi tavasz előtti februári csúcs is. Lásd 2. ábra.

Hogy a nagy számokkal dolgozó 1498-2021-es eloszlás vagy a 2000-2020 közötti modern kamerás adatokat figyelembe vevő ad-e valósabb képet a ténylegesen a Föld légkörébe érkező és meteoritokat “pottyantó/dobó” tűzgömbökről (angolul meteorite dropping) azt nem túl sokan vizsgálták. Én inkább az utóbbira hajlanék.
A két most közreadott táblázatot, de különösen az utolsót, soha sehol, semmilyen szakirodalomban nem láttam még így összefoglalva. Talán az elsők között lehet a meteoritikai kutatásokban, de magyar nyelven mindenképp. A saját adatgyűjtésem a szemtanús meteorit hullásokról magyar nyelven weboldalamon itt található.

Becsapódási események, kráterek

Szerző: Balogh Gábor

A kráter szó a latin „crater” szóból származik, eredetije a görög „κρᾱτήρ”. Meglepő módon a szónak eredetileg nem sok köze volt a geológiához, hanem a borhoz, mert azt a keverőtálat jelentette, amiben a bort keverték. A görögök ugyanis barbár szokásnak tartották a bort tisztán inni, előszeretettel keverték vízzel, gyantával, fűszerekkel, sőt, sós tengervízzel is (1).

Görög borkeverő tál, ie. I-II század.
https://www.metmuseum.org/art/collection/search/249374

Geológiai alakzatokra a kráter szót az emberiség sokáig csak a vulkáni kráterekre használta. Galileo Galilei volt az első, aki távcsövével először nézett a Holdra 1609-ben, és pillantotta meg annak krátereit. A vulkáni kráterekhez való hasonlóságuk miatt azonban sokáig vulkanikus eredetűnek vélték azokat. Csak a XIX század legvégén kezdtek gyanakodni arra, hogy ezek lehetnek más eredetűek is (Dr. Grove Karl Gilbert, 1890) (2), valamint az első földi becsapódásos kráter (Barringer Crater) eredete csak 1960-ban lett bizonyított. E kráter körüli kutatások és viták nagymértékben hozzájárultak a kráter-keletkezés megértéséhez. De mi is volt ebben a történetben a rendkívüli?

Barringer Meteor Crater, Arizona

Az 1200 méter átmérőjű, és 170 méter mély kráter Arizonában található. Köznapi neve Meteor Crater, a geológusok inkább Barringer Craternek nevezik, de sok más néven is ismert. 50.000 éve keletkezett, a pleisztocén időszakban. Bár az erózió 10-20 méterrel lecsökkentette a kráter peremét, a száraz sivatagi klíma és a képződmény relatív fiatal kora miatt a kráter nagyon jó állapotban maradt fent napjainkig. Az indiánoknak természetesen mindig is ismert volt, a fehér telepesek azonban csak a XIX. században fedezték fel. Eleinte vulkanikus eredetűnek tartották az akkor Coon Mountainnak nevezett krátert.

1891-ben Albert E. Foote mineralógus a kráter környékén talált vasdarabokról bebizonyította, hogy ezek vasmeteoritok (3). Ugyanebben az évben, Grove Karl Gilbert viszont ennek ellenére arra a következtetésre jutott, hogy a kráter vulkanikus eredetű (4). 1903-ban egy mérnök és üzletember, Daniel M. Barringer, azt feltételezte, hogy a krátert egy hatalmas vastömeg becsapódása okozhatta. Elgondolása szerint ez a hatalmas vastömeg – akkor 100 millió tonnára becsülték) a kráter mélyen rejtőzhet, kisebb részét, kb. 30 tonnát eddig meg is találtak belőle a kráter környékén. Ekkor még természetesen nem volt ismert a tudomány előtt a kráterképződés természete, tehát, hogy a becsapódó tömeg elpárolog az ütközéskor. Barringer vállalata, a Standard Iron Company, 27 évet töltött a vastömeg felkutatásával, melynek értékét akkoriban milliárd dollár nagyságrendűnek gondolták. Barringer semmit sem talált a kráter mélyén.

Harvey H. Nininger, a híres meteorit-kutató 1942-ben publikálta azt a hipotézisét, miszerint a krátert egy aszteroida becsapódása okozta (5). Végre 1960-ban Eugene Shoemakernek sikerült bizonyítania Nininger hipotézisét, azzal, hogy coesitet találtak a kráterben, mely csak extrém nagy nyomáson és magas hőmérsékleten keletkezik kvarcból (6).

De miért nem talált Barringer vasat a kráter mélyén? Mi történt ezzel a hatalmas vastömeggel a becsapódás pillanatában? Becsapódási kráternek (asztroblémának) nevezünk minden olyan mélyedést, mely robbanással keletkezik. Fontos megérteni, hogy hogyan is zajlik egy ilyen becsapódás. A világűrben kozmikus sebességgel keringenek az égitestek, kozmikus sebességgel is ütköznek egymással. Ütközésnél pedig a sebesség a kulcsszó, hiszen a kinetikus energia, a mozgásban levő testek energiája Ek=1/2m*v2.

A becsapódáskor az űrből érkező test 12-72 km/h sebességgel ütközhet a talajjal, mozgási energiáját néhány századmásodperc alatt átadja lökéshullám formájában. A becsapódó test sebessége nagyobb, mint a közeg hangsebessége, a lökéshullámfront a becsapódó test előtt koncentrálódik. A lökéshullám a becsapódó testre is visszahat, azt is elpárologtatja. A becsapódás epicentrumában a hőmérséklet a több ezer fokot is meghaladhatja.

Természetesen nem minden kozmikus test érkezése okoz krátereket, és ez nem kizárólag, de elsősorban az űrből érkező test tömegétől függ. Egy leegyszerűsített ábra a négy lehetséges kimenetelről (a szerző saját képei):

  1. Kis tömegű részecskék a légkörbe érkezve elpárolognak (meteor-jelenség).
  2. Közepes tömegűek lefékeződnek a légkörben, szabadeséssel, meteoritként érkeznek a talajra.
  3. Nagyobb tömegnél (aszteroidák) a légkörben nem lassulnak le jelentősen, kozmikus sebességgel becsapódva megsemmisülnek, és kráter keletkezik a becsapódás helyén.
  4. Nyomás- és hőmérsékleti-feszültségek, porózus szerkezet, vagy egyéb okok miatt becsapódás előtt felrobbannak a légkörben.

Az első esetben természetesen nem ér talajt a részecske, de az űrben, a légkörünk fölött, ezekkel a részecskékkel is számolni kell, hiszen kozmikus sebességgel becsapódva már létrehozhatnak krátereket a különféle űreszközökön (8). Légkör nélküli égitesteken hasonló a helyzet.

Második: a közepes tömegű testek a légkörbe érve felizzanak, majd lefékeződnek. Az úgynevezett sötét repülési szakaszban már szabadeséssel közelítik meg a talajt. Krátert ilyenkor már nem hoznak létre, legfeljebb kisebb-nagyobb mélyedést, de sokszor azt sem. Ezeket ne tévesszük össze az igazi kráterekkel, ahol a becsapódó test megsemmisül. Ezeket a gödröket, mélyedéseket, pit, pit crater vagy penetration crater néven is említik.

A legnagyobb meteorit, a 80.000 éves Namíbiai Hoba meteorit (10), mely több mint 61 tonna tömegű. Az atmoszféra itt is jelentősen lelassította, tehát szabadeséssel csapódott be, kb. 1200 km/h sebességgel.

A namíbiai Hoba meteorit

Harmadik: nagyobb tömegnél (aszteroidák) a légkörben nem lassulnak le jelentősen, kozmikus sebességgel becsapódva krátert hoznak létre a becsapódás helyén. Ez az adott égitest légkörétől függ, hiszen ritkább légkörű égitesten, pl. a Marson, aránylag kisebb tömegű sziklák is létrehozhatnak krátereket. A becsapódási krátereknek többek között két nagyobb fajtájukat figyelhetjük meg: az egyszerű és a komplex krátereket. Az egyszerű kráterek kisebbek, egyszerű tál alakúak. A Földön 3-6 km felett már gyakran komplex kráterek jelenhetnek meg, tehát egy központi csúcs keletkezik. Ezt a központi kiemelkedést a robbanás lökéshulláma által okozott nyomás megszűnése után a rugalmasan visszapattanó aljzat hozza létre. A még nagyobb kráterek esetében sokszor a központi csúcsot már felváltja egy bonyolultabb, gyűrűkből álló szerkezet.

A 80 kilométeres Daedalus komplex kráter a Holdon. Jól láthatóak körülötte
a kisebb, egyszerű kráterek.
A 83 kilométeres Tycho kráter 2 km magas központi csúcsa

Nem beszélhetünk becsapódási eseményről úgy, hogy nem említjük a 66 millió évvel ezelőtti Chicxulub-krátert létrehozó és az úgynevezett K–Pg (kréta-paleogén) tömeges kihaláshoz kapcsolódó becsapódást. A Yucatán-félsziget északi részén levő 170-200 kilométeres krátert 1978-ban fedezték fel kőolaj után kutatva. A becsapódó kisbolygó nagyjából 10-16 kilométeres lehetett, becslések szerint 400 zettajoule (4×1023 joule) energiát szabadított fel. A száz méter magas megacunami nyomait számos helyen felfedezték, éppúgy, mint a robbanás által létrehozott üvegcseppeket, tektiteket is. 1980-ban fedezték fel a K–Pg (kréta-paleogén) geológiai korok határát jelző kőzetréteget, mely a robbanás hatására elpárolgott földi anyag és a becsapódó aszteroida leülepedett anyagának keveréke.

Valószínűsíthető, hogy mintegy 160 millió évvel ezelőtt a 298 Baptistina nevű kisbolygó szétdarabolódott, és fragmentjei más égitestekkel ütköztek. Ezek eredményei többek között a földi Chicxulub-kráter és a holdi Tycho-kráter (28). A dolog fontossága azonban az eseményhez köthető tömeges kihalás (29). A robbanás által a légkörbe juttatott hatalmas mennyiségű por leárnyékolva a napsugárzást, meggátolta a fotoszintézist. A fajok mintegy 75%-a pusztult ki, többek között minden dinoszaurusz-faj is. A tengerekben még nagyobb volt a pusztulás – a planktonok 90%-a pusztult ki, a tengeri tápláléklánc összeomlott.

A Chixulub-kráter radar-topográfiája

Noha keletkezésükben a vulkanizmus is szerepet játszott, a holdi tengerek is becsapódásos eredetűek. Ezek a hatalmas, megszilárdult láva alkotta síkságok 3,1 – 3,9 milliárd évvel ezelőtt keletkeztek, szinte kizárólag a Hold Föld felőli oldalán. Ennek az volt az oka, hogy a Föld felőli oldalon a holdkéreg vékonyabb, itt a nagyobb aszteroidák át tudták ütni azt, szemben a túlsó oldallal, ahol vastagabb volt a kéreg. Keletkezésük két lépcsőben történt: először a becsapódás hatására megolvadtak az ott lévő kőzettömegek, majd a mélyből feltörő bazaltos láva töltötte fel a hatalmas mélyedéseket (15).

Mare Crisium a Lunar Reconnaissance Orbiter felvételén

Negyedik: felrobban a légkörben, még a becsapódás előtt. Erre a legismertebb példa a híres Tunguszka-esemény. 1908. június 30–án reggel, 7 órakor Szibériában, az Alsó-Tunguszka és a Léna folyó közti területen egy hatalmas robbanás történt. A robbanást okozó 65 méteres objektum viszonylag lapos (5–22 fokos) szögben hatold be a légkörbe, majd kb. 8 kilométer magasságban felrobbant. A robbanás energiáját 10–20 megatonnásra becsülik, mintegy 2150 km2 területet tarolt le. Bár becsapódási kráter nem keletkezett, az esemény impakt eseménynek számít (19). Mivelhogy a becsapódó test a légkörben robbant, nagyobb darabjai nem maradtak, de a helyszínen talált szferulák izotóparányai a kondritokéhoz vannak közel. Későbbi kutatások valószínűsítették az objektum jeges planetezimál, üstökös (2P/Encke) eredetét (21, 22, 23).

A letarolt tajga, Leonid Kulik 1931-es felvétele

Ehhez a ponthoz tartozik tulajdonképpen minden olyan becsapódási esemény, mely az óriásbolygókon történik. A gázóriásokon (Jupiter és Szaturnusz) nincs szilárd felszín, a légkör fokozatosan megy át egyre sűrűbb és sűrűbb rétegekbe. Hasonló a helyzet a hatalmas légkörrel bíró jégóriásokon is (Uránusz, Neptunusz). A Shoemaker–Levy 9 (SL9) üstököst Eugene Shoemaker és David Levy csillagász fedezték fel 1993 márciusában. Az üstökös ekkor már a Jupiter körül keringett, számítások szerint az valamikor a 60-as, 70-es években változtatta meg pályáját. Egy évvel a felfedezés előtt, 1992-ben szakíthatta szét a Jupiter árapályereje 1-2 kilométeres darabokra. Az üstökös fragmentjei 1994. július 16. és 22. között csapódtak be a Jupiterbe, 60 km/s sebességgel. A legnagyobb becsapódások nyomai ezután még hónapokig megfigyelhetőek voltak. A legnagyobb becsapódás július 18-án következett be, amikor az üstökös „G” fragmentje csapódott be. Mintegy hatmillió megatonnás robbanást idézett elő, egy hatalmas 12 000 km-es sötét foltot hagyva a bolygó légkörében.



Források:

  1. Az ókori görögök és a bor, http://borneked.hu/borlexikon/bortudomany/bortortenelem/okor/az-okori-gorogok-es-a-bor.html
  2. Reflections on the Legacy of Grove Karl Gilbert, 1843–1918, https://eos.org/features/reflections-on-the-legacy-of-grove-karl-gilbert-1843-1918
  3. Foote, A. E. (1891). “A new locality for meteoric iron with a preliminary notice of the discovery of diamonds in the iron”. American Journal of Science. 42 (251): 413–417
  4.  Crater History: Investigating a Mystery. The Barringer Crater Company.
  5. Nininger, Harvey Harlow (1942). A Comet Strikes the Earth. El Centro, California: Desert Magazine Press
  6. Coesite, Mindat, https://www.mindat.org/min-1104.html
  7. Impact Craters, https://planetangtagalog.blogspot.com/2013/02/impact-craters_17.html
  8. Salyut 7/Kosmos 1686 Helium Tank: https://fernlea.tripod.com/tank.html
  9. Meteorites in-situ, https://www.meteorite-recon.com/home/meteorite-documentaries/meteorites-in-situ
  10. Hoba meteorite, https://geulogy.com/hoba-meteorite-iron/
  11. Moon Craters, https://www.sciencesource.com/archive/Apollo-11–Moon-Craters–1969-SS21884630.html
  12. Daedalus Crater, https://www.nasa.gov/multimedia/imagegallery/image_feature_25.html
  13. Dramatic Sunrise Over Moon’s Tycho Crater, https://www.wired.com/2011/06/tycho-crater-sunrise/
  14. Lunar Maria, https://www.sciencedirect.com/topics/earth-and-planetary-sciences/lunar-maria
  15. Bonnie J. Buratti, in Encyclopedia of Physical Science and Technology (Third Edition), 2003
  16. Mare formation on the Moon, https://ase.tufts.edu/cosmos/view_picture.asp?id=1070
  17. Lunar Reconnaissance Orbiter,
    https://www.nasa.gov/mission_pages/LRO/multimedia/lroimages/LROMoonImages_archive_1.html
  18. Tunguska, https://science.nasa.gov/science-news/science-at-nasa/2008/30jun_tunguska
  19. Nemiroff, R.; Bonnell, J., eds. (14 November 2007). “Tunguska: The Largest Recent Impact Event”. Astronomy Picture of the Day. NASA. Retrieved 12 September 2011
  20. Lyne, J. E.; Tauber, M. (1995). “Origin of the Tunguska Event”. Nature. 375 (6533): 638–639
  21. Cornell University (24 June 2009). Space Shuttle Science Shows How 1908 Tunguska Explosion Was Caused By A Comet
  22. Kresak, L’ (1978). “The Tunguska object – A fragment of Comet Encke”. Astronomical Institutes of Czechoslovakia. 29 (3): 129, http://adsabs.harvard.edu/full/1978BAICz..29..129K
  23. On the possible relation between the Tunguska bolide and comet Encke, https://www.sciencedirect.com/science/article/abs/pii/S0032063397000056
  24. LiveScience, https://www.livescience.com/tunguska-impact-explained.html
  25. New evidence of meteoritic origin of the Tunguska cosmic body, https://www.sciencedirect.com/science/article/abs/pii/S0032063313001116
  26. Hubble Space Telescope felvétele a “G” fragment becsapódásáról, https://www2.jpl.nasa.gov/sl9/image112.html
  27. “Chicxulub”. Earth Impact Database. Planetary and Space Science Centre University of New Brunswick Fredericton. Retrieved December 30, 2008.
  28. Claeys P, Goderis S (2007. szeptember 5.). „Solar System: Lethal billiards”. Nature 449, 30–31. o
  29. Understanding the K-T boundary, https://www.lpi.usra.edu/science/kring/Chicxulub/

Jézus születése és a Betlehemi Csillag rejtélye

Szerző: Szoboszlai Endre

Több bibliai jövendölés megfejtésénél hívták már segítségül a teológusok és a történészek a csillagászati kronológiát. Így volt ez Jézus születési időpontjának a meghatározása kérdésében is. A neves vallástörténeti eseményt ugyanis csak hozzávetőleges pontossággal tudták időben behatárolni.  

A csillagászati kronológia azért tud segíteni, mert a nap- és holdfogyatkozásokat, valamint a bolygóegyüttállásokat, megbízhatóan tudja előre – vagy vissza – számolni. Ez a lehetőség adta a kulcsot az emberiségnek ahhoz, hogy a leghatalmasabb világvallás megteremtőjének, Jézus Krisztusnak megtudhassuk a születési dátumát, legalábbis kb. egyéves pontossággal behatároljuk. A pontos választ azt hiszem, soha nem tudhatjuk meg, hiszen a csillagászat csak azt tudja megválaszolni, hogy mi volt a „betlehemi csillag” és mikor volt látható. Azt viszont nem, hogy ténylegesen mikor született Jézus.


Máté evangéliumában:

Amennyiben az égi látványosság pontosan lett leírva a születés után a Bibliába, akkor reményünk lehet arra, hogy megfejtjük a kérdést. Idézzük ehhez Máté evangéliumából a megfelelő részt (2. 1-2):

„Amikor pedig megszületik vala Jézus a júdeai Betlehemben, Heródes király idejében, ímé napkeletről bölcsek jövének Jeruzsálembe, ezt mondván: Hol van a zsidók királya, aki megszületett? Mert láttuk az Ő csillagát napkeleten és azért jövénk, hogy tisztességet tegyünk néki…”

A három bölcs

A bibliai idézet két információt is közöl: Jézus Heródes halála előtt született, és azt, hogy valami ritka látványosság volt az égen. Ezeken túl pedig joggal feltételezhetjük, hogy mitológiai okokat is keresnünk kell, hisz az akkor élt emberek hitvilágában mélyen jelen volt az asztrológia tanítása.

Heródes halálának az időpontját kell megkísérelni megfejteni, és aztán már van egy adat a további kutatásokhoz. Heródes halála a történészek szerint i.e. 4 tavaszán volt, a zsidó húsvét előtt. A zsidó húsvét abban az évben április 11-ére esett. Érdekes, hogy a Heródes halálának időpont-megállapításakor is a csillagászat segített. Heródes életének utolsó időszakában beteg volt, továbbá nagyon féltette hatalmát. Nem sokkal a halála előtt egy lázadás tört ki ellene, amit sikerült elfojtania és a lázadás vezetőit egy este máglyán elégettette.

Flavius, az I. században élt híres zsidó történetíró (született Jeruzsálemben kb. 37-ben, elhunyt Rómában, 100 körül) szerint a kivégzésekor holdfogyatkozást lehetett látni. A csillagászati kronológiának köszönhetően sikerült megállapítani, hogy a keresett égi látványosság az i.e. 5. szeptember 15-én bekövetkezett teljes holdfogyatkozás volt, mely 20 óra után kezdődött.

Heródes a lázadók vezéreinek kivégeztetése után elutazott a Holt-tengerhez, hogy betegségét ott gyógyítsa, azonban nem járt eredménnyel a kúra.

I. Heródes (született az izraeli Askelón városában i.e. 74, vagy 73-ban, elhunyt Jeruzsálemben, i.e. 4 márciusában) ábrázolása

Ezután I. Heródes visszautazott Jeruzsálembe. A városban már halálhíre kelt és legkisebb fia, Antipater (akit apja börtönben tartott) már az uralkodását próbálta előkészíteni. A zsarnok és féltékeny uralkodó ezért saját fiát megölette (csakúgy, mint előtte már másik két fiát). A történelmi feljegyzések szerint a zsarnok uralkodó saját fiának megöletése után öt nap múlva meghalt. Utóda hosszadalmas és nagy szertartással szállíttatta Heródiumba, és ott eltemettette. A felsorolt sok eseményre bizonyára volt idő, i.e. 5. szeptember 15. és i.e. 4. április 11-e között, amikor a zsidó húsvét előtt meghalt Heródes. Így az első fontos dátum megállapítást nyert és ebből következik, hogy Jézus születését hamarabb kell keresnünk! Több elképzelés szerint a születési időpontot azonban nem szabad i.e. 8-nál régebben keresnünk, és az előzőekben feltárt események miatt pedig i.e. 4, a másik dátum, ami között keresnünk kell egy égi jelet. Sok ábrázolás üstököshöz hasonló jelenség feltűnését örökíti meg, vagy többen gondolnak arra is, hogy szupernóva csillag fellángolása volt az égi látványosság. Természetesen ezek a valóban ritka és szemet gyönyörködtető jelenségek is lehettek volna a Jézus születését előjelző égi üzenetek, csakhogy a gondos kínai feljegyzések a megadott időszakban nem rögzítettek sem üstököst, sem szupernóva felfénylést! Arról nem is beszélve, hogy ezek mitológiailag nem magyarázták volna a messiás eljövetelét! Rendkívül lényeges továbbá, hogy a látvány többször is feltűnt, felhívta magára a (bizonyosan Babilonban élő) napkeleti bölcsek figyelmét. A Bibliából megtudhatjuk, hogy a feltűnést látva indultak el a napkeleti bölcsek Jeruzsálembe, ahová megérkezvén tudakozódtak Heródestől, hogy hol született meg a zsidók királya. Azt is megtudhatjuk a Bibliából, hogy az útbaigazítás után ismét látták a jelenséget, hiszen az mintegy vezette őket, előttük ment… Heródes a bölcseknek megkerestette régi próféciákból, hogy hol kell a zsidóság megmentőjének megszületnie és így igazította őket Betlehem városa felé.

A Születés Temploma Betlehem városában

A csillagászok számításai szerint Jeruzsálemből kb. dél-délnyugati irányban, a megadott időszakban csak egy látványosság tündökölt az égen, mégpedig a Jupiter és a Szaturnusz együttállása a Halak csillagképben! Sőt i.e. 7-ben a rendkívül ritka háromszori együttállás valósult meg. Ez a ritka jelenség pedig további elfogadhatónak tűnő magyarázatot is ad. A régi zsidóság asztrológiai hitvilágát a babiloni papcsillagászok kiválóan ismerhették, hiszen a babiloni fogság idején érintkezésben volt a két nép. Mitológiailag elfogadható magyarázatként szolgálhat tehát a jelenség, mert a Jupiter királyi csillagként szerepelt, a Szaturnusz pedig a zsidóság szombati ünnepnapjának (és általánosságban véve a zsidóság) csillaga volt. (Azt most ne vegyük figyelembe, hogy mindkét égitest bolygó és nem csillag.) A Halak csillagkép pedig a Messiás csillagképe volt, és egyben a Babilontól nyugatra lévő Palesztinát jelentette. Továbbá az asztrológiában, általánosságban véve a születéssel kapcsolatos. Tehát ha a legfőbb hatalom jelképe a Jupiter, mint királyi csillag, a Szaturnusszal, mint a zsidóság csillagával, a Messiás csillagképében (a Halakban) egy évben háromszor is együttállásban van, akkor az a babiloni bölcsek szerint azt jelentette, hogy megszületett a zsidóság felmentője, a római elnyomás alól.

(Mint tudjuk, a zsidók nem tekintették messiásuknak Jézust, és továbbra is várják a Messiás eljövetelét, aki a jeruzsálemi Aranykapun fog majd bejönni.)


Rendkívül ritka bolygóegyüttállás

A babiloni papcsillagászok bizonyosan várták az említett együttállást, mert valószínűleg birtokokban volt több százéves észlelési adat ilyen ritka jelenségről. Erre van is agyagtáblába vésett ékírásos bizonyíték. Az égi látványosság eme ritkaságai a számítások szerint i.e. 861 végétől 860 közepéig, i.e. 7-ben, majd i.sz. 1940/41-ben és 1981-ben voltak. Ebből láthatjuk, hogy az i.e. 860-ban bekövetkezett Jupiter-Szaturnusz együttállás után csak az i.e. 7-ben feltűnt jöhet számításba. Megjegyzendő, hogy az 1940/41-es és az 1981-es nem a Halakban volt.

A jelenség természetesen csak a Földről nézve izgalmas, hiszen hatalmas távolság van a két bolygó és a Föld között a valóságban. A háromszori együttállásról röviden annyit, hogy akkor jöhet létre, amikor a Jupiter látszólagos hurok mozgása teljesen lefedi a Szaturnuszét. Elsőként Kepler (1571-1630) gondolt arra, hogy ebben a jelenségben keresse a „betlehemi csillag” rejtélyét. Kepler idejében, 1603-ban szintén látható volt a Jupiter és a Szaturnusz (de egyszeri) együttállása, akkor a Skorpió csillagképben. Ezután 1940/41-ben lehetett háromszori együttállást látni, a Kos csillagképben, amely közel van a Halakhoz. Legközelebb majdnem háromszoros együttállás csak 2238 augusztusának végén és 2239 februárjának végén lesz (az Ikrekben), de ezután eltávolodnak a bolygók egymástól, és a harmadik közelség elmarad. A Halakban a két bolygó csak 2378 februárjában lesz együttállásban, de csak egyszer. (Egyszeri együttállás nem ritka, mert húszévenként bekövetkezik. Éppen 2020. december 21-22-én csodálhatunk meg egy szép bolygóközelséget, amikoris a Szaturnusz és a Jupiter szinte egyben látszik majd az égbolton.)

Tehát megállapíthatjuk, hogy a Jupiter és a Szaturnusz együttállása volt az égi jel, mely először i.e. 7. június elején, másodjára szeptember végén, és végül december elején tűnt fel.

Jeruzsálem égboltja időszámításunk előtt 7-ben, november 12-én éjjel

Vélhetően csak szeptemberben vállalkozhattak (a nyári meleg enyhültével) a babiloni napkeleti bölcsek a kb. 1000 km-es tevekaravános útra, Jeruzsálemig. Két hónap alatt ezt minden bizonnyal megtehették, amikor ismét feltűnt a két fényes bolygó közelsége a decemberi égbolton. (A közbeeső időben látszólag eltávolodnak egymástól, de aztán újra látványosan közelednek, amikor az első közelséget követő távolodás elmúlik, akkor ismét közelítenek egymáshoz a bolygók. Ilyenkor már bizonyos, hogy háromszori együttállás lesz. Ezt már tudták a babiloni csillagászok, sőt várták is.)

Az evangélium leírása szerint a napkeleti bölcsek nem csecsemőt, hanem gyermeket kerestek. Ebből arra lehet következtetni, hogy Jézus ekkor már nagyobbacska volt. Erre találunk is magyarázatot, ha azt feltételezzük, hogy Jézus hamarabb született, mint i.e. 7 decembere. Mi utalhat erre az elképzelésre? A Bibliában érdemes tovább kutatni és egy másik evangélium utalását figyelembe venni.


Lukács evangéliumában nincs utalás

Lukács evangéliumában ugyanis nincs említve csillag! Ez helyes is lehet, ha azt feltételezzük, hogy Jézus az előbb említett időpontnál hamarabb született! Lukács evangéliumából megtudhatunk egy olyan eseményt, aminek a dátumát megállapítva szintén közelebb juthatunk a rejtély kulcsához. Ez az esemény pedig egy népszámlálás, ami miatt József és Mária Betlehembe ment, ahol Mária megszülte elsőszülött fiát.

Jézus születésének az emlékhelye Betlehemben, a Születés templomában

Idézzük ehhez Lukács evangéliumából a megfelelő részt (2. 1-7):

„És lőn azokban a napokban, Augustus császártól parancsolat adaték ki, hogy mind az egész föld összeírattassék. Ez az összeírás először akkor történt, mikor Siriában Czirénius volt a helytartó. Menne vala azért mindenek, hogy beírattassanak, kiki a maga városába. Felméne pedig József is Galileából, Názáret városból Júdeába, a Dávid városába, mely Betlehemnek neveztetik, mivelhogy a Dávid házából és házanépe közül való volt Hogy beírattassék Máriával, a ki néki jegyeztetett feleségül, és várandós vala. És lőn, hogy mikor ott valának, betelének az ő szülésének napjai. És szülé az ő elsőszülött fiát és bepólyálá őt, és helyezteté őt jászolba, mivelhogy nem vala nékik helyük a vendégfogadó háznál.”

Az idézetből két információt szűrhetünk ki: az egyik az, hogy az első népösszeíratás volt az, amikor Jézus született, továbbá az, hogy ez a népszámlálás Czirénius idejében volt. A történészek szerint Czirénius (Quirinius) i.e. 8-ban érkezett Palesztinába, de csak később lett helytartó, mégpedig i.e. 3-ban és aztán időszámításunk után 6-ban. Tehát az evangélium írója itt kis pontatlanságot ejtett. Ezt a kijelentést azért tehetjük, mert a népszámlálás időpontját sikerült a történészeknek kideríteni, pontosabban a rendelet kiadásának dátumát. Augustus császár nép-összeíratási rendeletét i.e. 8-ban adta ki és Palesztina távolsága miatt joggal feltételezhetjük, hogy ott csak kb. egy év múlva, esetleg valamivel hamarabb tudták végrehajtani!


December 25-26-ának nincs semmi köze Jézus megszületéséhez

A nép-összeíratási rendelet időbeli beazonosításának megismeréséből viszont az következhet, hogy i.e. 8-ban vagy 7 elején Jézus már élt! Ezt bizonyíthatja az is, hogy Heródes állítólag a kb. kétéves és az ettől fiatalabb fiúgyermekeket, megölette Betlehem városában és környékén. Úgy gondolta, hogy a napkeleti bölcsektől megtudott adatok birtokában a kb. kétéves fiúgyermekeket kell megöletnie és akkor biztosan „beleesik” a zsidók királya is. (A hatalmát hisztérikusan féltő Heródes ezen szörnyű tettét a bibliai leíráson kívül semmi nem látszik bizonyítani, ezért sokan kétségbe vonják.) Amennyiben mégis volt gyermekgyilkosság, akkor ezt a gyermek Jézus túlélte, hisz akkorra a Szent Család a Biblia szerint márt Egyiptomban élt (később pedig Názáretben). Nemcsak a napkeleti bölcsek szóhasználatából (gyermek és nem csecsemő) következtethetünk arra, hogy i.e. 7 decembere előtt Jézus már élt, hanem abból is, hogy csak a IV. század végén rendelte el a keresztény egyház, hogy a téli napforduló napján legyen Jézus születésének ünnepe. (A régi római naptár szerint a téli napforduló december 24-éről 25-ére virradó éjjelen volt.) A IV. század előtt ugyanis tavaszi időpontokban volt kisebb megemlékezés.


A pogány hitvilágtól a karácsony megünnepléséig

A régi pogány napisten hittel kapcsolatos, hogy Kis-Ázsiában, Közel-Keleten és Egyiptomban a téli napforduló idején (ekkor leghosszabb az éjszaka és legrövidebb a nappal) születtek a napistenek, akiket nagyon tiszteltek. Tehát ez az ünnep december 24-éről 25-ére virradóan volt és napkeltekor. Ezt a pogány ünnepet még a IV. században is megtartották. Az egyház belátta, hogy tovább él ez a szokás és elrendelte, hogy keresztény tartalommal kell megtölteni! A régi római naptár december 25-ére tette a napfordulót és ezért lett Jézus születésének ünnepe is ez a nap. Kedvezett az ünneppé tételhez, hogy más népek is megemlékeztek a téli napfordulóról, pl. a régi germánok máglyát gyújtottak a sötétség ellen és az életet jelképező örökzöld fenyővel díszítették házukat. (Ma már a téli napforduló csillagászati és földrajzi eseménye december 21-én következik be.)

A keresztény tartalommal megtöltött régi pogány napisten-ünnep tehát lassan összeolvadt az észak-európai eredetű fenyőünneppel. Erre utal a karácsonyi fenyőfánk, a rajta meggyújtott gyertya pedig a sötétséget űzi el, akárcsak régen a máglyák. A felerősített csillagfigura pedig az egykori „betlehemi csillag” emlékeként ragyog a keresztény ember számára, hirdetve Jézus Krisztus megszületését.

Bizonyos, hogy teljesen megbízhatóan soha nem tudjuk megállapítani Jézus tényleges születési dátumát, de annyi elfogadható, hogy i.e. 7-ben vagy 8-ban született. A Gergely-naptár kiinduló éve (epochája) ezért helytelen. A VI. században élt Exiguus római apát javasolta az úgynevezett „keresztény éra” bevezetését, de több más ténnyel együtt egyszerűen nem vette tudomásul, hogy Heródes még élt, mikor Jézus született…

Ma már azonban nem is a rideg csillagászati, történelmi, matematikai és kronológiai adatok a lényegesek a keresztény hívő embereknek, hanem szent Karácsony átélt és bensőséges ünnepe…

Hírek: Arecibo – egy korszak vége

Kereshetjük a szavakat, de talán nem lehet jobban kifejezni, mit is jelent az ikonikus Arecibo-i rádióteleszkóp pusztulása. Egy korszak vége.

2020. december 1-jén elpusztult a már régóta nagyon rossz állapotban lévő Arecibo-i Rádióteleszkóp, a 900 tonnás, kábeleken lógó platform belezuhant az obszervatórium tényérjába. A komplexum már így is bontásra lett ítélve: az elhanyagolt műszer két rögzítőkábele már korábban elszakadt, lyukakat ütve az antennatányérba. Az amerikai National Sciences Foundation (NSF) ekkor döntött a viharok, hurrikánok amortizálta komplexum lebontásáról.



Ilyen volt fénykorában, illetve ez maradt a híres rádiótávcsőből:


Az Arecibo-i rádióteleszkóp nemcsak csillagászati, de planetológiai szempontból is egy fontos eszköz volt: segítségével készült az első radartérkép a Vénuszról, sikerült jeget kimutatnia a Merkúr északi és déli sarkvidékein, alapvető szerepe volt földközeli kisbolygók kutatásában, felfedezte az első exobolygókat a PSR 1257+12 pulzár körül, mégis talán leginkább az Arecibói üzenet néven elhíresült rádióadás által lett ismert, melyet technológia-demonstráció céljából sugároztak 1974. november 16-án a tőlünk 25000 fényévre lévő Messier 13 nevű gömbhalmaz irányába.