Egy majdnem sarki fény nyomában

Szerző: Kocsis Erzsó

Október 28-ára egy ősz végi, igazán impozáns napkitörést prognosztizáltak az előjelzések. Azon a csütörtökön 17 óra 35 perckor megtörtént az X1-es erősségű napkitörés. Szombatra pedig a NOAA (a Nemzeti Óceán- és Légkörkutatási Hivatal – National Oceanic and Atmospheric Administration) SWPC (Űridőjárás-előrejelző Központ – Space Weather Prediction Center) az ötfokozatú skálán G3-as erősségű geomágneses vihart vetített elő.

Ez év júliusában volt hasonló történés. Azóta tudjuk, hogy hiába ácsorogtunk volna a hazai erkélyeken, nem láthattuk volna az aurora borealis szeszélyes táncát magyar égbolton. Ám mielőtt belemerülnénk, mi volt az, amit végülis nem láttunk, egy rövid áttekintés: a Nap felszíne alatti, egy kb. 200000 km vastag rétegben igen viharos, turbulens események történnek.

Ezek hozzák létre azt a mágneses teret, aminek szerkezete, időbeli változása további folyamatokat generál. Ez a dinamómechanizmus, ami mechanikai energiából elektromágneses energiát termel. Ennek köszönhető, hogy egy bizonyos helyen a mágneses tér iránya a maximális térerősség alatt megközelítőleg kelet-nyugati irányú (toroidális tér), ám a minimális térerősségnél a pólusok irányába mutató (poloidális tér). A naptevékenység emiatt fog 11 éves ciklusokban változó erősséget produkálni. A mostani 25. ciklus a 2019. decemberi minimummal indult, és előre láthatóan 2025. nyarán fog tetőzni. A napkitörés tehát nem más, mint hirtelen energia-felszabadulás. A mágneses tér újraformálódása történik az aktív vidék felsőbb rétegeiben, elsősorban a kromoszférában. Mind a részecskesugárzás, mind az elektromágneses sugárzás növekszik ekkor a naplégkör egy bizonyos területén. A csillagunk felületén lejátszódó események közé tartoznak a napkitörések, azaz a flerek.

Ezeket először 1859-ben Carrington angol csillagász észlelte. Hale pedig 1892-ben figyelte meg spektroheliográfiával a flereket. Nagyobb napkitörések általában a napfoltcsoport közepén, a mágneses polaritásokat elválasztó nullavonal két-két oldalán alakul ki. Földünkön több hullámban jelennek meg a napkitörés okozta zavarok. A fénysebességgel haladó rádióhullámok körülbelül 7-8 perc alatt érik el bolygónkat, majd a következő hullámmal érkező töltött részecskék 2-3 nappal múlva lesznek érzékelhető hatással. A napkitöréseket egy betűrendszer szerint osztályozzák. A C-osztályú viharok elég gyengék, az M-osztályúak erősebbek, az X-osztályúak pedig a legintenzívebbek. Az X2 kétszer annyira, mint az X1, az X3 háromszor annyira intenzív stb. Ha közvetlenül a Föld felé irányulnak, a legerősebb X-osztályú kitörések szoktak zavart okozni a rádió- és műholdas kommunikációban, és felerősíthetik az aurora borealist. A K-indexet, és ezen keresztül a bolygó K-indexét a geomágneses viharok nagyságának leírására használják. Ez megmutatja bolygónk mágneses mezejében bekövetkező zavarokat. Az SWPC arra használja, hogy eldöntse, ki kell-e adnia geomágneses riasztást – , illetve figyelmeztetést az érintett felhasználóknak. Tehát 1859-ben volt a legelső dokumentált észlelés. Szeptember 1-jén 11:18-kor Richard Carrington napcsillagász távcsövén keresztül figyelte meg, majd vázolta fel a napfoltokat. Ez a kitörés volt az elmúlt 500 év legnagyobb dokumentált napvihara. Az azt követő sarki fényt még a Karib-térségben is látni lehetett.

Súlyos fennakadásokat okozott a globális távíró-kommunikációban is. Az 1972. augusztus 4-ei nagy napkitörés az USA néhány államában (pl Illinois) megszakította a távolsági telefonos kommunikációt. Az 1989 márciusi pedig kilenc órán át tartó áramszünetet okozott Kanadában. 2000. július 14-én egy X5-ös fokozatú néhány műhold rövidzárlatát okozta.  2003. október 28-ai olyan intenzív volt, hogy az űrszonda érzékelőjét is túlterhelte. Nem is csoda, hiszen a NASA szerint körülbelül X45-ös csúcserősséget ért el. 2006. december 5-ei körülbelül 10 percre megzavarta a műholdak és a Föld közötti kommunikációt, valamint a globális helymeghatározó rendszer (GPS) navigációs jeleit. Október 28-án csillagunk jelenlegi ciklusának egyik legerősebb viharát vártuk. A X1-es osztályú napkitörés 15:35 (GMT) érte el a csúcspontját. Ez átmeneti, erős rádiós áramszünetet okozott például Dél-Amerika közepén. A kitörésből származó koronális tömegkilövellések szombaton vagy vasárnap (október 30-31.) érték el a Földet. Erős geomágneses viharával kissé megzavarva a műholdas kommunikációt. Ennek köszönhettük a szebbnél-szebb sarki fényes képeket skandináv barátainktól – már attól, aki volt oly szerencsés, hogy nem csak a felhőket fotózhatta…C. Alex Young, a NASA tudományos igazgatóhelyettese szerint (marylandi Goddard Űrrepülési Központjának heliofizikai részlege) ezt a napkitörést egy koronális tömegkitörés (CME) kísérte. Ez az AR2887 nevű aktív napfoltból indult, ami most éppen a Nap közepén helyezkedik el. Egy másik aktív napfolt, az AR2891 október 24-én egy közepes, M-osztályú napkitörést okozott. Ez is átmeneti rádiókimaradást eredményezett a magas frekvenciákon, valamint GPS-kimaradást az alacsony frekvenciájú jeleket használó eszközöknél. Az elkövetkezőkben egyre több űridőjárási hatást tapasztalhatunk, ahogy haladunk a napmaximum felé. A Napunk bármikor képes meglepetést okozni egy-egy váratlan nagyobb kitöréssel. 2024-2025-ig akár még valóban ácsorogtunk a hazai erkélyeken, látva az aurora borealis szeszélyes táncát magyar égbolton.

Források:

https://www.swpc.noaa.gov/news/x1-flare-r3-radio-blackout-event-28-october-2021?fbclid=IwAR0VEQ4HuOIkCBXduSz8I34hsQY2AxplIxCW0CVKpGili7erlPjuhPrdLng
https://www.swpc.noaa.gov/news/x1-flare-r3-radio-blackout-event-28-october-2021?fbclid=IwAR269dPvyhY_N8fyRa_up36VKfXIX1KgzD8nlYSp8WEHdZIaeRtC3Eq2aqg
https://www.space.com/sun-unleashes-major-x-class-solar-flare-october-2021
https://www.space.com/12584-worst-solar-storms-sun-flares-history.html
https://hu.wikipedia.org/wiki/Nemzeti_%C3%93ce%C3%A1n-_%C3%A9s_L%C3%A9gk%C3%B6rkutat%C3%A1si_Hivatal
https://mek.oszk.hu/00500/00560/html/kleint2.htm
https://www.idokep.hu/hirek/eros-napkitores-tortent

Történelmi sarki fény viharok

Szerző: Gombai Norbert

A Földön 40-60 évente fordulnak elő nagyobb sarki fény viharok. A Journal of Space Climate and Space Weather folyóiratban, a közelmúltban megjelent kutatási eredmények is ezt támasztják alá. A jelenség mindenképpen gyakoribb, mint azt korábban gondoltuk. A tanulmány a “nagy sarki fény vihart” a 30. mágneses szélességi fok (MLAT) környékén, vagy attól délre vizuálisan is látható auróra jelenségként határozta meg. Delores Knipp, a Coloradói Egyetem munkatársa és a tanulmány szerzője az elmúlt 500 év észleléseit átvizsgálva 14, a fenti kritériumnak megfelelő eseményt azonosított.

Kép forrása: Space Weather Archive

Az ilyen, több száz évnyi időszakon átívelő történelmi kutatás egyáltalán nem könnyű, hiszen a legtöbb esetben hétköznapi emberek, papok, kereskedők, hajósok feljegyzéseiből, naplóiból, vagy éppen magán leveleiből kell kiszemezgetni az értékes információ morzsákat. A XVI-XVIII. században ráadásul még nem nagyon emlegették a sarki fény kifejezést. A jelenség észlelésekor rendszerint “párát”, “színes ködöt”, sőt szellemeket emlegettek a déli országok lakói, akik nem voltak hozzászokva a különös égi látványossághoz. További nehézséget okozott a nyomozás során, hogy olykor idegen és egzotikus, a kutatók által nem beszélt nyelven íródott dokumentumokat is át kellett vizsgálni a minél teljesebb kutatás elvégzése érdekében. A különböző történelmi forrásokat átnézve számos olyan, az Egyenlítőhöz közeli szélességi fokon elhelyezkedő földrajzi helyről jelentettek sarki fény jelenséget, mint Florida, Kuba, vagy éppen Szamoa.

A kutatási időszak legkorábbi észlelései 1582. március 6-8. között történtek. Ezekben a kora márciusi napokban a portugáliai Lisszabonból (É.sz. 39° – A cikkben szereplő szélességi fokok a földrajzi szélességet jelölik.) Pero Ruiz Soares az alábbiakat jegyezte fel:

“Az égboltnak ezen területe vörös lángokban égett. Úgy tűnt, hogy maga az égbolt lángol. Senki nem látott még ilyesmit… Éjfélkor rettenetes és félelmetesen nagy tűz-sugarak emelkedtek a kastély fölé… A következő napon ugyanez történt, ugyanebben az órában, de a jelenség már nem volt olyan hatalmas és rémisztő. Mindenki kiment a környékbeli mezőkre, hogy láthassa a nagyszerű jelenést.”

A következő nagy mágneses vihar 1653-ban, 71 évvel később érte el Földünket. Érdekes módon ekkor már javában benne voltunk a 1645-1715-ig tartó ún. Maunder naptevékenységi minimumban. (A Maunder-minimum volt az első teleszkópos megfigyelésekkel is dokumentált naptevékenységi minimum. Nevét E. W. Maunder angol csillagászról kapta.)

A Maunder-minimum 1645–1715 között. Forrás: Wikipedia, Robert A. Rohde, Global Warming Art project; CC BY-SA 3.0

1653. március 2-án a közép-kínai Cáoxiànban (É.sz. 35°) „tüzes fényeket láttak az égbolton mind a négy égtájon, amelyek később kékes foszlányokká váltak“. Ugyanaznap Japán szívében, a Tokyotól északra található Shimotsumában vörös és fehér “gőzöket” figyeltek meg Nasu és Odawara irányában. A jelenést zászlókhoz hasonlították, sőt még azt is megfigyelték, hogy a vörös színű “gőzök” hamarabb eltűntek.

1730. február 15-e körül újabb viharos folyamatok zajlódhattak a Napon, aminek eredményeképpen számos alacsony szélességi fokon elhelyezkedő településen láttak északi fény jelenséget világszerte. A kutatók észleléseket gyűjtöttek Kelet-Ázsiából (pl. Tsugaru, Japan (É.sz. 38°), a Közel-Keletről és számos európai városból, például Pozsonyból (É.sz. 48°), Rómából (É.sz. 42°), Marseilles-ből (É.sz. 43°) és a spanyolországi Granadából (É.sz. 37°).

40 évvel később, 1770 szeptemberében ismét extrém erejű napvihar érte el bolygónkat. Észlelések egész csoportja írja le a kilenc napon át (szeptember 10-19.) tartó eseménysorozatot, amely alatt rendkívül fényes, vörös sarki fény borította be többek között Kína és Japán égboltját.

A híres felfedező, James Cook kapitány és a HMS Endeavour legénysége is látta (és feljegyezte) a jelenséget a déli féltekén (!) található indonéziai Timor-sziget közelében.

A fedélzeten tartózkodó Sydney Parkinson botanikai/természettudományi rajzoló így írta le a látványt 1770. szeptember 16-án:

“Éjszaka 10 és 11 óra között, még holdkelte előtt figyelemre méltó jelenséget láttunk a déli égbolton, amely egy egységre nyugatra és két egységre keletre és majd 20 fok magasságba terjedt ki, tüzes ragyogással és fehéres sávokkal függőlegesen emelkedve a horizontról…”

A geomágneses viharral összefüggésbe hozható napfoltokról számos korabeli rajz készült.

Johann Caspar Staudacher német amatőrcsillagász Nürnbergből több napon keresztül lerajzolta a kiterjedt folt csoportot, amely a rajzok alapján majd kétszer akkora volt, mint az 1859-es hírhedt Carrington-eseményt okozó csoport.

Az 1859. szeptember 1-jei napfoltok Richard Carrington rajzán. Forrás: Wikipedia

1859. augusztus 28-a és szeptember 2-a között, egy évvel az 1860-as 10. napciklus maximumát megelőzően ismét nagyobb napfolt csoportok tűntek fel központi csillagunk felszínén. Szeptember 1-én két angol amatőrcsillagász Richard Carrington és Richard Hodgson egyidőben észleltek egy óriási napkitörést. Az ezt követő koronakidobódás (coronal mass ejection) plazmafelhője a 150 millió km-nyi Nap-Föld távolságot 17,6 óra alatt megtéve átsöpört bolygónk légkörén. Az ennek eredményeképpen kialakult geomágneses vihar szeptember 1-én és 2-án kiterjedt sarkifény jelenségeket okozott világszerte. Még Hawaii-on és a karibi térségben, Kubában és Kolumbiában is tisztán láthatóak volt az auróra fényei. Voltak olyan települések, ahol állítólag olvasni is lehetett a szabad ég alatt éjszaka annyira világos volt és olyan erővel tombolt a mágneses vihar. A kor telekommunikációs csúcs technológiájának számító távíró hálózat túlterhelődött, a távíró póznák szikrákat hánytak, több technikus megsérült.

A Carrington-eseményről sokáig azt tartották, hogy egy igen ritka, már-már egyedülálló jelenség volt. A legújabb kutatások – észlelési archívumok, sarki jég rétegvizsgálatok – azonban azt valószínűsítik, hogy a szélsőséges geomágneses viharok nagyjából 40-60 évente fordulnak elő. A “közelmúltban” történt 1921. május 13-15-e közötti vihar, amelyet számos részletes észlelés rögzített Indiától a mexikói Sinaloán (É.sz. 24°) keresztül a Hawaii szigetekig, vagy az 1989. márciusában történt jelenség, amely Kanada Quebec tartományában 12 órás, teljes áramszünetet okozott, időbeni összhangban vannak a kutatási eredményekkel.

Egy napkitörés mérete a Földhöz viszonyítva. Forrás: NASA

A legutóbbi nagy geomágneses vihar tehát 32 éve történt. Csak idő kérdése egy újabb esemény, melynek hatásait a modern elektromos és kommunikációs hálózatokra, navigációs rendszerekre, műholdakra csak megbecsülni tudjuk. Távcsöveinkkel és egyéb műszereinkkel folyamatosan vizsgáljuk a Napon végbemenő folyamatokat annak érdekében, hogy időben észleljük a Földre potenciálisan veszélyes korona anyagkilökődéseket.


Forrás:

Long-Lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents – The Astrophysical Journal Letters

A Timeline of Great Aurora Storms – Space Weather Archive

Bolygós rövidhírek: gyűrűs napfogyatkozás – a messzi Északon

Szerző: Kovács Gergő

Június 10-én gyűrűs napfogyatkozás lesz látható Európa, Észak-Amerika és Észak-Ázsia területén, a gyűrűs fogyatkozás sávja Északnyugat-Kanadán, az Északi-sarkon és Kelet-Szibérián halad át. Az esemény gyűrűs napfogyatkozás lesz, melynek során a földtávolban lévő Hold nem képes teljesen eltakarni a Napot, így csillagunk a totalitáskor egy gyűrű képében ragyog tovább.

A fogyatkozás Budapestről 12:04 és 13:27 közt lesz látható, a maximumot pedig 12:45-kor figyelhetjük meg. Az ország nyugati és keleti felén az időpontok néhány percet eltérnek. Forrás: Balázs Gábor/Stellarium/Parallaxis

Hazánkból a fogyatkozás mindössze 0,75-3,8%-os fázisú lesz, mely szabad szemmel nem/nagyon nehezen lesz érzékelhető. A Napot és a rajta lévő lévő apró “beharapást” kizárólag megfelelő napszűrővel vagy naptávcsővel nézzük! SOHA ne nézzünk távcsővel a Napba! A koncentrált fény- és hőhatás azonnali vakságot okoz!

A fogyatkozás láthatósága. Forrás: NASA

Fivérem Nap, Nővérem Hold

Szerző: Kocsis Erzsó

A Lófej-köd, a C/2020 F3 (NEOWISE) üstökös és a Hold,
ahogy két harmadikos nebuló észleli.
Rajzolta/tervezte: Szalay Tia és Bardócz Mátyás Vince (Nógrádsáp)

A Kutatók Éjszakája keretében egyik rendezvényünk a „Fivérem Nap, Nővérem Hold” asztrofotós kiállítás volt. Rendkívüli helyzetben a képek digitalizálva lettek feltöltve Coolstarz csillagászati szakkörünk közösségi oldalára. Ebben a formában mind a mátészalkai Móricz Zsigmond Görögkatolikus Általános Iskola és Óvoda mind a nógrádsápi Fekete István Általános Iskola tanulói láthatták az égbolt csodáit. Az egyik kép ihlette meg két nógrádi kisdiák fantáziáját. A harmadikos kisdiákok munkájában hűséges földi kísérőnk valamint 2020 nyarának „sztár-jelensége” a C/2020 F3 (NEOWISE) üstökös adja hátterét a Lófej-ködnek. Már ők is tudják, hiszen a Coolstarz szakkör „utánpótlás csapatát” erősítik, hogy a téli estéken az iskolából kilépve az Orion csillagkép köszön rájuk. Bár szabad szemmel nem észlelhető, de Tia és Matyi is jól ismerik jellegzetes formáját. Edward Emerson Barnard 1919-es katalógusának 33-as sorszámot viselő objektumát 27 naptömegnyi hideg por és gáz alkotja. Komótosan, 10 km/s sebességgel délnyugat felé haladva fokozatosan lassulva kavarog 5 fényév magas oszlopa a végtelen űrben. Kis tömegű csillagkezdemények bújnak meg belsejében, míg a fiatalabb csillagok a felső peremén ragyognak. Az Égi vadász fényes öve pedig pár hétig látható égi társunk marad fagyos téli estéinken.

A Kutatók Éjszakájának asztrofotós kiállítása megtekinthető itt.

Forrás: https://www.csillagaszat.hu/a-het-kepe/a-het-csillagaszati-kepe-a-lofej-kod-az-orionban/

A 25. napciklus kezdetén

Szerző: Balázs Gábor

2020 folyamán időnként egy-egy apróbb napfolt feltűnt, július végén, augusztus elején ismét több kisebb folt jelent meg, ezáltal arra lehetett következtetni, hogy Napunk túl van aktivitásának minimumán, új ciklus kezdődött el. Ezt a felvetést néhány hete a NASA is igazolta, ugyanis elemzéseik szerint Napunk 2019 decemberében volt a legkevésbé aktív, ekkor ért véget a 24. ciklus, ekkor kezdődött el egy újabb 11 éves periódus. Előrejelzésük szerint a 25. ciklus maximuma 2025 júliusában várható, mely hónapban 115 körül alakulhat a napfoltok száma.

A napfoltok sokéves eloszlása.
Forrás: http://www.sidc.be/silso/IMAGES/GRAPHICS/V1.0/wolfmms.png
Napunk, a folttevékenységének minimuma és maximuma alatt.
Forrás: NASA

Röviden a napfoltokról:

A foltok a Nap ún. fotoszféráján jelennek meg. Területükön a felszíni hőmérséklet hozzávetőlegesen 1500 °C-vel hidegebb a nyugodt felület 6000 °C-ához képest. Emiatt a hőmérsékletkülönbség miatt fellépő kontrasztkülönbség az oka, hogy az amúgy vörös foltokat feketének látjuk.
Kialakulásuk a mágneses tér változásaihoz köthetőek, ugyanis míg a nyugodt napfelszín mágneses tere 1 gauss erősségű, a napfoltok mágneses tere 3000 gauss körül alakul.
Ha távcsőben vagy képen nézünk egy nagyobb foltot, két élesen elkülönülő részt figyelhetünk meg. A legszembetűnőbb a középső, legsötétebb rész, az umbra, ami a folt leghidegebb része. A másik rész, az umbrát körülölelő sugaras szerkezetű, szürke színben látható penumbra. Megfigyelhetőek még olyan foltok, mely körül nem alakul ki a penumbra. Ezek a pórusok.

Napfoltok a Szerző rajzán. Bővebben a napfoltokról ezen a linken:
https://www.spaceweatherlive.com/en/solar-activity/region/12671



Figyelem!!! Soha ne nézzünk a Napba távcsővel megfelelő napszűrő nélkül!!!


A Nap aktuális felszínének képe:
https://sohowww.nascom.nasa.gov/data/realtime/hmi_igr/1024/latest.html

A Nap ciklikus tevékenysége a gazdaság több területét is befolyásolja. Erről szól egy részletesebb írás ezen a linken:
https://planetology.hu/napfoltok-es-a-buza-ara/


Források:
Magyar Csillagászati Egyesület – Amatőrcsillagászok Kézikönyve
https://www.nasa.gov/press-release/solar-cycle-25-is-here-nasa-noaa-scientists-explain-what-that-means/
https://www.nasa.gov/feature/goddard/2020/what-will-solar-cycle-25-look-like-sun-prediction-model
https://www.weather.gov/news/201509-solar-cycle


Hell Miksa

Szerző: Csaba György Gábor

Hell (eredeti nevén Höll) Miksa 1720. május 15-én született Selmecbányán. Apja bányamérnök volt, fontos találmányokkal segítette a bánya fejlődését. Miksa (talán) 22 testvére közt is volt két kitűnő bányászati szakember. A technika története mindhármukat számon tartja.

Miksa 1738-ban belépett a jezsuita rendbe. A rendi képzés idején latinra fordított s kibővítve kiadott egy olasz matematikai munkát; teológusi évei alatt pedig társai használatára egy történeti kisenciklopédia-félét írt (Adiumentum memoriae manuale chronologico-genealogico-historicum), amely különböző országokban többször is megjelent. 1751-ben szentelték pappá, s Besztercebányára helyezték. Innen irányította a nagyszombati, majd kolozsvári tanárként az ottani csillagda építését. Később több csillagda, így pl. az egri, a budai stb. létrehozásában is részt vett. Ő tervezte az egri líceum csillagász-tornyában ma is működő idegenforgalmi látványosságot, a periszkópot; ő gondoskodott az egri csillagda részére szükséges műszerek, könyvek beszerzéséről, szakemberek képzéséről is.

A már ismert nevű jezsuitára az említett „kisenciklopédia” felhívta az uralkodónő figyelmét. Mária Terézia 1755-ben kinevezte udvari csillagásznak, s ettől kezdve Hell Bécsben dolgozott. Sok feladatát (csillagászati észlelések, tanítás, a felszerelés karbantartása és fejlesztése, előadások és bemutatások tartása a nagyközönségnek stb.), köztük a nemzetközi hírnévnek örvendő csillagászati évkönyv (Ephemerides astronomicae ad meridianum Vindoboniensem) szerkesztését és kiadását élete végéig mindig nagyon pontosan és lelkiismeretesen végezte. Több, elsősorban matematikai, fizikai és csillagászati tárgyú könyvet is kiadott. Érdekes köztük például a „Dissertetio de satellite Veneris…” (azaz Értekezés a Vénusz holdjáról…) c., 1765-ben megjelent könyvecske, melyben leírja, hogy sok csillagász vélte felfedezni a Vénusz holdját – pedig ilyen hold nem létezik, az összes felsorolt észlelés optikai csalódás. Sőt az említett észlelések leírásából azt is meghatározta, milyen műszert használtak az észlelők, s hogyan jöttek létre bennük a tükröződések, melyek a csillagászokat félrevezették.

Nevét 1760-ban változtatta Hell-re, nyilván a Höll – Hölle, azaz ’pokol’ asszociáció miatt. Erről szól egy rendtársa, Paintner epigrammája, mely magyar fordításban kb. így hangzik:

Höll volt rég, de midőn Bécsből észlelte az égbolt

            csillagait, méltán lett ragyogóbb neve Hell.

Így föld mélyéből, éjszínü sötét üregekből

            nemzetsége nevét égbe ragadta fel ő.

Legfontosabb és legismertebb eredménye a napparallaxis meghatározása volt – ami azonban inkább csak vitákat és kellemetlenségeket hozott számára, mintsem elismerést.

Mint Halley korábban megmutatta: ha a Földnek legalább két helyéről pontosan észlelik a Vénusz Nap előtti átvonulását, az eredményekből kiszámítható a Nap parallaxisa (a szög, melyben a Nap középpontjából a Föld sugara látszanék), azaz lényegében a Nap-Föld távolság. 1761 június 6.-án ezért sok csillagász figyelte a Vénusz-átvonulást. Köztük volt Bécsben Hell is, aki 1764-ben az Ephemerides Astronomicae-ben részletesen beszámolt tapasztalatairól. Eszerint a megfigyelést két jelenség is megzavarta, bizonytalanná téve az érintkezés pillanatát. Egyrészt a Nap elé lépő Vénusz sötét korongját fényes kör vette körül, a Vénusz légkörének fénytörése (tehát bebizonyosodott, hogy a bolygónak van légköre). A másik jelenség még váratlanabb volt: amikor a Nap és a Vénusz korongja belülről csaknem érinti egymást, köztük sötét folt, az ún. fekete csepp jelenik meg.

A mérést nagy pontossággal kellett volna végrehajtani, de az eredmények csalódást keltettek. Ezért az 1769. június 3.-i következő átvonulás megfigyelését még nagyobb gonddal és körültekintéssel igyekeztek megszervezni. Bécsben, Hell munkahelyén ez az átvonulás nem volt látható, az udvari csillagász tehát lemondott a jelenség megfigyeléséről. Azt tervezte, hogy a számításokat elvégzi majd a mások által mért adatokból. 1767-ben azonban VII. Keresztély dán király meghívta Hellt, utazzék Vardö szigetére, s onnan figyelje meg az átvonulást. Vardö több szempontból is kiváló megfigyelőhelynek ígérkezett: ott május végétől augusztusig a Nap sosem nyugszik le, tehát a jelenség idején sem; másrészt magasan északon fekszik, ami a parallaxis-mérés szempontjából különösképpen előnyös. Igaz, a hely megközelítése nem volt sem könnyű, sem veszélytelen; a vidék gyéren lakott, zord, időjárása sem valami kedvező. Hell már ötvenedik évében járt, mégis vállalta a kalandosnak ígérkező expedíciót, természetesen azzal a feltétellel, ha mind uralkodója, mind rendi elöljárói engedélyezik utazását. Az engedélyeket megkapta; a csillagászt és útitársát Mária Terézia is fogadta, útjuk iránt szeretettel érdeklődött, s azt bőkezűen támogatta. Hell rendtársával, Sajnovics Jánossal 1768. április 28-án indult útnak.

Számítania kellett rá, hogy a zord északi időjárás, a gyakran borult ég meghiúsítja az észlelést. Hogy a sok költség és fáradság kárba ne vesszen, Hell nagyszabású tudományos programot dolgozott ki és végzett is el, melyben többek között meteorológiai, földrajzi, geofizikai, botanikai, zoológiai és néprajzi megfigyelések is szerepeltek. Hogy csak egyetlen eredményét emeljük ki: Norvégia partjainak minden pontján, ahol kikötöttek, gondos csillagászati helymeghatározást végzett – ez volt a térség első precíz földrajzi felmérése. Ezt természetesen Vardöben is megtette, sőt elkészítette a sziget pontos térképét is. Közben kipróbálta a földrajzi szélesség (tkp. a sarkmagasság) mérésére feltalált igen fontos és pontos módszerét; ez ma Horrebow-Talcott eljárás néven ismeretes.

Az okkultáció megfigyelését körültekintően előkészítette társaival, Sajnoviccsal és egy Borgrewing nevű dánnal. A várva várt napon az ég felhős volt, de a jelenség kezdetére mégis kisütött a Nap. Miután a Vénusz kívülről érintette a Nap korongját (1. kontaktus), majd belülről is (2. kontaktus), ismét beborult az ég. Ez komoly aggodalmat keltett, mert Hell jól tudta, hogy e két kontaktus adatai a számításokhoz nem elegendők. A bolygó Nap előtti elhaladását, ami több órát vett igénybe, csillagászaink nem láthatták. Már remélni sem merték, de a Vénusz kilépése előtt ismét kiderült az ég, és a belső, majd a külső érintést (3. és 4. kontaktus) zavartalanul, a lehető legpontosabban sikerült megfigyelniök — mint később megtudták, Európában egyedül. Ezzel expedíciójuk fő célját elérték.

Ugyanekkor a Föld déli félgömbjén James Cook kapitány kutatóútja, amelyet részint épp a Vénusz-átvonulás megfigyelése céljára szerveztek (s amelynek során számos földrajzi fölfedezés született, így pl. Ausztrália, Új-Zéland és Tahiti fölfedezése), szintén sikerrel járt. Cook hajója, az Endeavour művészeket és tudósokat is szállított, köztük több csillagászt. A bolygóátvonulást a frissen fölfedezett Tahiti szigetén észlelték, és följegyzéseik szerint váratlanul érte őket a „fekete csepp” megjelenése. (A megfigyelés idején ott igen meleg volt, ami tovább nehezítette a mérést. A kutatók egészségét is megviselte, olyannyira, hogy az egyik csillagász, Green, belebetegedett és meghalt.) Ez a megfigyelés elengedhetetlenül szükséges volt a napparallaxis kiszámításához, hiszen ez csak úgy lehetséges, ha a Föld legalább két, lehetőleg távoli pontján sikerül adatokat gyűjteni.

Hell az expedícióról hazatérve és eredményeit a Cook-féle expedíció méréseivel egybevetve elvégezte a számításokat, és a napparallaxis értékére 8.70”-et kapott (mai ismereteink szerint kb. 8.80”). Ezt az 1770-ben megjelent könyvében (Observatio transitus Veneris ante discum Solis die 3. Junii anno 1769. Wardoehusii etc.) közölte, ahol a megfigyelés előzményeit, pontos leírását is megtaláljuk. A kötet megjelenése elég sok időbe telt, mert a tudósnak meg kellett várnia a Cook-féle eredményeket, majd elvégezve a számításokat, könyvét a dán király elé kellett terjesztenie jóváhagyás végett, s csak ezután nyomathatta ki. Sajnos az utazás teljes tudományos leírása, amit Expeditio litteraria címen tervezett, nem készült el. Megvan azonban a mű részletes vázlata; ezt olvasva csak sajnálhatjuk, hogy e nagyszerű terv, Hell sok más tervével együtt, a jezsuita rend feloszlatása miatt nem valósulhatott meg.

Az expedíció során Hellnek föltűnt, hogy a lappok beszéde, kiejtése hasonlít a magyarhoz. (Egy levelében így írt: …titok terhe alatt közlöm, hogy az egész északon egészen Ázsiáig elterjedt jeles lapp nemzetségnek fölfedeztük egy népét. Jó Isten, ki hitte volna, hogy mi ugyanazon ősatyától való testvéreket fogunk találni a lapp népben! Magyarok, testvéreink, a mi magyar nyelvünket beszélik, a mi magyar ruhánkat hordják, a mi régi magyar atyáink szokásai szerint élnek, egyszóval, testvéreink…) Ennek jelentőségét azonnal fölismerte, s fölkérte Sajnovicsot, kutassa tovább a dolgot. Sajnovics nekifogott, ám a munkát nehézsége miatt többször abbahagyta. Hell mindannyiszor segítette, buzdította társát, míg végre megszületett az összehasonlító nyelvészet egyik alapvető műve, a Demonstratio idioma Ungarorum et Lapponum idem esse. Maga Sajnovics írja, hogy a művet ugyan ő maga vetette papírra, de elkészülte voltaképpen Hell érdeme. A Demonstratio lényege a magyar és a lapp nyelv közeli rokonságának bizonyítása. Mint úttörő munka, nem mentes túlzásoktól, sőt tévedésektől sem, de értékét ez aligha csökkentheti.

A Vénusz-átvonulásról szóló könyv „késése” miatt Hellt sok támadás érte. Először a nagy francia csillagász, Lalande támadta meg, kétségbe vonva nemcsak eredményeit, hanem Hell tudományos tisztességét is. Ezt Hell az Ephemerides 1773-as kötetében visszautasította, mire Lalande elismerte, hogy tévedett. Sajnos ezzel nem volt vége a támadásoknak, amelyek Hell halála (1792) után lángoltak föl igazán. A bécsi csillagda későbbi igazgatója, Karl Littrow (aki – a budai csillagvizsgáló igazgatójaként szerzett tapasztalatai alapján némi joggal – nem kedvelte a magyarokat), kéziratban vizsgálta meg Hell írásait, és bizonygatta, hogy Hell csalt, a kézirat tele van vakarásokkal, javításokkal, és utólag, más színű tintával készült átírásokkal. Szerinte szerzőnk, miután megkapta a Cook-féle adatokat, eredményeit módosította, hogy magát a valóságosnál sokkal jobb észlelő színében tüntesse föl. Littrownak sokan hittek; Hellt tudományos csalás elkövetőjének hitték, s a napparallaxis értékére Enckének Hell eredményénél sokkal pontatlanabb adatait fogadták el.

Csaknem 100 év telt el, míg egy elfogulatlan kutató, az amerikai Newcomb, utánanézett, mi igaz Littrow vádjaiból. 1883-ban Bécsben járva (egy új műszert akart kipróbálni, de hetekig borult volt az idő) unalmában megnézte Hell kéziratát, melyről ő is úgy vélekedett, mint Littrow korábban. Ám az alapos vizsgálat meggyőzte, hogy a naplóban látható korrekciók (vakarás egyáltalán nincs!) egyszerű tollhibák javításai, amelyek hol erősebben, hol gyengébben fogó tollal, de többnyire közvetlenül a hiba elkövetése után történtek. A tinta sem más színű, hanem — Littrow volt színtévesztő! Newcomb igazolta, hogy a Hellre szórt vádak alaptalanok voltak.

A jezsuita rend 1773-as eltörlésével megszűnt a rend által Hellnek nyújtott támogatás. Ekkor Hell a világi papság kötelékébe lépett, reménykedve rendje újjáéledésében – amit azonban nem érhetett meg. Ha nem is zavartalanul, de folytatta sokoldalú tudományos munkáját többek között néprajz, földrajz, történelem, fizika, teológia tárgyköreiben, természetesen a csillagászat mellett. 1774-ben a naptár ügyében nyújtott be egy tervezetet a bécsi udvarhoz; ennek eredményeképpen kiadhatott egy 1776-os csillagászati naptárt.

Élete vége felé Hell sokat panaszkodott arról, hogy egyes „bécsi firkászok” támadják, rágalmazzák, úgyhogy már alig tud dolgozni és aludni. E „firkászok” alatt Born Ignác lovag értendő, aki valóban goromba támadásokat intézett a csillagász ellen. Pedig amúgy érdemdús férfiú volt: neve mineralógusként vált ismertté – mellesleg Mozart „Varázsfuvolá”-jában róla mintázták Sarastro alakját. De miért támadta Hellt? Csak azért, mert fiatal korában maga is jezsuita volt, ám a rendből kilépet, s attól fogva minden alkalmat megragadott, hogy gyalázza azt. Hell megtámadása ennek csak egyik részlete volt.

E támadások, valamint az egymagában, segítő nélkül végzett, mégis egyre szaporodó munka aláásta Hell egyébként sem szilárd egészségét. 1792 tavaszán meghűlt, s lázas, hurutos betegségéből már sohasem gyógyult fel. 1792 április 18-án, 72 éves korában hunyt el.

Még életében több külföldi akadémia (többek között a párizsi) választotta tagjának. Újabban egy kisbolygót (3727 Maxhell), valamint a Holdon egy krátert neveztek el róla.

Vénusz-átvonulást hazánkból legutóbb 2004. június 8.-án, majd 2012 június 6.-án láthattunk (az előbbit teljesen, az utóbbinak csak az elejét). Az egész jelenség tőlünk legközelebb 2247-ben lesz megfigyelhető.

Napfoltok és a búza ára

avagy ki fedezte fel Amerikát?


Szerző: Balogh Gábor


Sir William Herschel

1801-ben Sir William Herschel, a német származású angol csillagász meglepő hipotézist tett közzé, miszerint összefüggés lehet a napfoltok száma és a búza ára között. Herschel közel negyven évig (1779–1818) tanulmányozta a napfoltokat. Adatait összevetette Adam Smith: „A nemzetek gazdagsága” (1776) című művének a búza árára vonatkozó adataival is. Mivelhogy megfigyeléseinek legnagyobb része az úgynevezett Dalton-minimumban (1790-1830) történtek meg, amikor kevés napfolt volt, nem vehette észre a naptevékenység 11 éves periodicitását.

A jelenség gazdaságra gyakorolt hatása rendkívül fontos, ezért nem csak csillagászok, hanem gazdasági elemzők is nagyon komoly kutatásokat végeznek annak érdekében, hogy összefüggést találjanak a csillagászati események és a gazdaság között.

Hogyan is befolyásolhatják ezek a csillagászati jelenségek Földünk időjárását, vagy akár éghajlatát? Az első ilyen tudományos megerősítés 1856-ban született, mikor Edward Sabine bebizonyította a napfoltok és a mágneses viharok közötti összefüggést. Ezzel szemben, a napfoltok és az időjárás közötti közvetlen kapcsolatot sokkal nehezebb detektálni, hiszen ezt számtalan dolog befolyásolja. A napfoltok és a búza ára közötti összefüggést még nehezebb megállapítani, hiszen a gazdaság nem egy tiszta fizikai rendszer, ezt számtalan dolog befolyásolja, mint például a politika, tőzsdei spekuláció, vagy akár a tömegpszichológia is. A globalizáció is például egyfajta „védőszelepként” működik az árak esetében.

Herschel ötlete, úgy tűnik, néha „működik”, néha nem, napjainkig sok vita folyik hipotéziséről. Ami érdekes, az a rész, amikor „működik”.

A búza-dollár index alakulása és a napfoltok.
Forrás: Tom McClellan: Sunspots – The Real Cause of Higher Grain Prices

Hasonló összefüggést láthatunk a szarvasmarha-árak és a napfoltok között.

Szarvasmarha-árak és a napfoltok.
Forrás: Sergey Tarassov: Sunspot activity and stock market

Természetesen nagyon sok tényező (gazdasági, technológiai, mezőgazdasági) befolyásolja ezt a korrelációt. Vegyük például a kukorica árát, itt csak 1950-ig láthatjuk a fenti összefüggést, valószínűleg az 1960-as „Zöld Forradalom”-nak köszönhető új technológiáknak. 1950 után ez az összefüggés eltűnik.

Kukorica-árak és a napfoltok. Forrás: Sergey Tarassov: Sunspot activity and stock market

Matematikai számításokkal is tesztelték azt a hipotézist (Burakov), és rövid- és hosszútávú összefüggést egyaránt találtak a napfoltok, a búza terméshozama, ára és a nem teljesítő banki hitelek (non-performing loan, NPL) között.

A napfoltok, ezek az időszakos jelenségek a Nap „felszínén”, fotoszféráján, a többi területhez képest sötét foltoknak látszanak. Valójában egyáltalán nem sötétek, hanem csak a mintegy 5,800°K hőmérsékletű környezetüknél kétezer fokkal hidegebbek, itt negyedannyi a sugárzás intenzitása. A napfoltok egy hasonlattal élve tulajdonképpen hűvös, mágneses dugók egy gödörben, melyek meggátolják a konvektív áramlást.

Napfoltok, forrás: NASA’s SDO
A napfoltok száma és a mért kozmikus sugárzás fordított arányossága.University of Delaware

De hogyan befolyásolhatják a napfoltok a Földi időjárást, pláne a búza árát? Napfoltmaximum idején, tehát amikor több napfoltot látunk a Napon, aktívabb a Nap, kisebb a kozmikus sugárzás intenzitása, napfolt-minimumok idején pedig nagyobb. A kozmikus sugárzás – mely nem is annyira sugárzás, hanem elsősorban nagyenergiájú részecskékből áll – ionizálja a Földi légkört, és ezzel elősegíti a felhő- és csapadékképződést, befolyásolja az időjárást. Különböző földrajzi területeken azonban más lesz a jelenség hatása. Másképpen hat a Föld egészére, globálisan, és más hatásokkal találkozhatunk az egyes földrajzi területeken is. Természetesen, amint már megjegyeztük, rengeteg dolog befolyásolja a gazdaságot, a tőzsdét is.

A Nap azonban nagyobb dolgokba is beleszólhat, és itt talán egyértelműbb az összefüggés.

Amerika felfedezése egy másik példája a Napnak a klímára való hatására. Arra a kérdésre, hogy ki fedezte fel Amerikát, három jó válasz is van. Mindhárom esetben a Nap szólt bele a felfedezésbe, a vikingek esetében pedig a feledésbe merülésébe is. De ki fedezte fel Amerikát? Először, tulajdonképpen, maguk az indiánok. Egyelőre nevezzük őket szibériaiaknak, akik mintegy 15-18.000 évvel ezelőtt, száraz lábbal kelhettek át a Bering-szoroson, követve a vándorló mamutokat. A tengerek szintje jóval alacsonyabb volt, mint ma, ezért ahol ma tenger van, ott egy hatalmas földnyelv kötötte össze Szibériát és Észak-Amerikát. Később, a felmelegedés hatására a jég olvadni kezdett, a tengerek szintje emelkedett, elöntve ezzel Beringiát, létrehozva a Bering-szorost. Az Amerikában ideiglenesen elszigetelődött populációkból alakultak ki az indiánok, helyesebb elnevezéssel Amerika őslakói.

Leif Erikson (Leifr Eiríksson)

Másodjára a vikingek fedezték fel Amerikát, 1001-ben. Ez az úgynevezett „Középkori Meleg Időszak” (Medieval Warm Period) ideje volt 900–1300 között. A hőmérséklet magasabb volt, mint ma, különösen az Észak-atlanti vidékeken. Az akkori átlaghőmérséklet meghaladta a római kori időszakot is. Nőttek a terméshozamok, a népesség rövid idő alatt megduplázódott. Emiatt is vált szükségessé a vikingek számára Grönland gyarmatosítása. Grönland „Zöldföldet” jelent, ez is jelzi, hogy ez a hatalmas, ma jeges sziget déli részét akkor erdők borították, a partok dúskáltak a halakban. Vörös Erik vezetésével a telepesek gabonát termesztettek, háziállatokat tartottak, csaknem 620 ilyen farmot tártak fel Grönlandon, nyolc-kilencezer embernek adva megélhetést.

Maga az amerikai kontinens felfedezése sem váratott sokáig magára. Grönland felfedezése után tovább hajóztak nyugat felé, újabb területeket fedezve fel. Bjarni Herjólfsson hajója 985-ben elszakadt társaitól, és három nap hajózás után megpillantotta az amerikai szárazföldet. Tizenöt évvel később Leif Erikson már egy kisebb telepet is létrehozott a szárazföldön, általuk Vinlandnak elnevezett területen. (Vinland vagy a viking ’vínber’ szóból ered, legjobban ’borbogyó’-nak fordíthatnánk – ez jelenthetett szőlőt is, ribizlit is, vagy a vin szóból, ami viszont mezőt, farmot jelent. Ezt sajnos ma már nem tudhatjuk, mert a középkori viking rúnaírás nem tett különbséget a hosszú és a rövid ’i’ között.) 1960-ban Új-Fundland északi részén, L’Anse aux Meadows öbölben egy viking település maradványait tárták fel, melyet a „Vörös Erik történetében” szereplő Straumfjörð-del azonosítanak.

Jól látható a térképen, hogy a vikingek rövid, part menti hajózással tudtak eljutni Amerikába.
A szerző saját képe.
Viking ház rekonstrukciója. L’Anse aux Meadows National Historic Site,
http://whc.unesco.org/en/list/4

Az idilli helyzet 400 éven át tartott. Az időjárás 1300 után kezdett megváltozni, egyre hidegebb lett, lassan lehetetlenné vált a földművelés. Egy Grönlandon járt püspök 1350-ben már elhagyatott településeket talált itt, a korábban megművelt földek helyett lényegében permafroszt, örökké fagyott talaj fogadta. 1378-ban az Egyház el is hagyta Grönlandot, mikor a part menti hajózás lehetetlenné vált a jég miatt. 1408-ből még fennmaradt egy házassági bejegyzés, de az 1721-es expedíciót vezető Hans Egede már nem talált itt európaiakat, a kontinensen pedig valószínűleg még hamarabb pecsételődött meg a települések sorsa.

Hvalsey templom romjai Grönlandon, Wikipédia
A part menti szakaszok befagytak, lehetetlenné téve a hajózást.
A szerző saját képe.

Véget ért a „Középkori Meleg Időszak” (Medieval Warm Period).

Mielőtt rátérnénk a következő felfedezőre, Kolumbuszra, nézzük meg, hogy mi okozhatta a következő lehűlési időszakokat? Elfogadott elmélet, hogy a nagyobb ciklusoknak, a jégkorszakoknak főként a Milanković-ciklus az oka. Az utóbbi csaknem egymillió évben az eljegesedések 100.000 éves ciklusokban követték egymást, ami tökéletesen megfelel a Milanković-ciklus elméletének, mely egyszerre veszi figyelembe a változó Föld-Nap távolságot, a Földpálya alakját (excentricitását), a precessziót (a földtengely mozgását), az apszidiális precessziót, a forgástengely szögét, és a pályahajlást (inklináció). Természetesen más okai is vannak, különösen nagy geológiai léptékekben, mint például a légkör összetétele, a tektonikai lemezek relatív helyzete, óceánáramlatok, vulkáni tevékenységek, stb.

A Kis Jégkorszakot például, melynek jó részét a Maunder-minimum uralta, az „elhúzódó napfolt-minimum kora”, a napfoltok szélsőségesen kevés száma jellemezte. 1645 és 1715 között a napfolttevékenység szünetelt, illetve szélsőségesen ritka volt.

Napfoltok száma és a hőmérséklet összehasonlítása közép-Angliában
IPCC, Michael Lockwood

De mi a helyzet azokkal az időszakokkal, mikor még nem történt rendszeres napfolt-megfigyelés, és így nem állnak rendelkezésünkre ilyen adatok? Szerencsére a szén 14-es izotópja segítségünkre lehet ebben. Ennek az izotópnak (14C) a képződése a nap aktivitásának függvénye. A 14C a felső atmoszférában képződik, amikor a légköri nitrogénből (14N) képződik a kozmikus sugárzás hatására. Ha a Nap aktívabb, kevesebb kozmikus sugárzás éri Földünket. Ez a 14C, amelyet a sarki jégben vagy akár fák évgyűrűiben találhatunk, egyedülálló lehetőséget kínál a kozmikus sugárzás és a naptevékenység sok évezredes hatásainak a rekonstruálására. Segítségével felbecsülhetjük az adott időszak napfolttevékenységét, és ez által az adott klímát.

A kozmikus sugárzás és a hőmérséklet alakulása. Steinhilber et al

A kozmikus sugárzás intenzitásának csúcsai tökéletesen egybeesnek az adott hidegebb időszakokkal, (O:Oort-, W:Wolf-, S:Spörer-, M:Maunder-, D:Dalton-, G:Gleissberg-minimumok) .

Amerika viking felfedezése felejtésbe merült – Európának még nem volt rá szüksége.

Kolumbusz Kristóf (Cristoforo Colombo)

Kolumbusz családjának – és sok más polgárnak a sorsa azonban egyre nehezebb lett Oszmán Birodalom terjeszkedésével egyidejűleg, ugyanis ez a keleti piacok, kereskedelmi utak megszűnésével járt. A fiatal Kolumbusznak hamar szakítania is kellett a posztókereskedelemmel, és tengerésznek állt. Többek között, 1477-ben eljutott Izlandra, és ez meghatározó fordulat volt életében. Beszélt izlandi tengerészekkel, akiknél a korábbi nyugati utak még nem merültek feledésbe, ahol nem is olyan távoli nagyapáik jártak. Motoszkálni kezdett egy gondolat a fejében.

A tengerészek tudták, hogy a Föld gömbölyű, hiszen a távolodó hajónak először az alja tűnik el. A szerző saját képe

Akkoriban már közismert volt, hogy a Föld gömbölyű, viták csak arról szóltak, hogy mekkora is ez a gömb. Ötlete az volt, hogy nyugat felé hajózva is el lehet jutni a gazdag Indiába. Tudta, hogy ilyen nagyszabású tervhez támogatókra lesz szüksége, néhány ével belül neki is látott támogatást szerezni. Mivel akkoriban Portugáliában élt, először a portugál királyt kereste meg tervével. Az addig jelentéktelen Portugália akkor kezdett tengeri hatalommá válni. II. János portugál király azonban nem látván reálisnak tervét, visszautasította őt. A portugálok inkább Afrikát megkerülve akartak eljutni Indiába.

Ezután a Spanyolországot egyesítő katolikus uralkodókhoz, Aragóniai Ferdinándhoz és Kasztíliai Izabellához fordult. A zűrös politikai helyzet miatt az uralkodók azonban sokáig váratták, csak 1492 januárjában született döntés, hogy támogatják Kolumbusz útját.

Kolombusz három hajójának rekontrukciója, a Santa María, a Pinta és a Niña.
Forrás: Smithsonian Magazine

1492. augusztus 3-án vágott neki az óceánnak három, mai szemmel ijesztően kicsi hajóval. A háromárbocos Santa María karakkal és két kis karavellával, a Pinta-val és a Niña-val. Technikai problémák, hajósérülések miatt a Kanári szigetekről csak szeptember elején indulhattak tovább. Maga a hajóút sem volt konfliktusoktól mentes, Kolumbusz négy hétre becsülte az utat, de ez idő lejártával még mindig a nyílt óceánon voltak. Miután csaknem lázadás tört ki, kozmetikázni kezdte a hajónaplót, kevesebb megtett utat jegyzett fel a hajónaplóban.

Kolumbusz akaratlanul a leghosszabb utat választotta Amerika felé.
A szerző saját képe

1492. október 12-én érték el Guanahani szigetét, melyet San Salvadornak, Szent Megmentőnek nevezett el. Az itt látott taínókat indiánoknak nevezte, mert úgy vélte, hogy Indiába jutott. Tovább hajózott Kubába – melyet Kínának hitt, majd Hispaniolába, és sok más szigetet is felfedezett. 1493. március 15-én ért haza a spanyol Palos kikötőjébe nemesfémmel, fűszerekkel, új gyümölcsökkel, kukoricával, dohánnyal és burgonyával – és az Indiába vezető út felfedezésének dicsőségével. Visszatérte után hősként fogadták, majd újabb utakkal bízták meg. Kolumbusz négy útja után sem tudta, hogy (újra-)felfedezte Amerikát, de ezzel megalapozta a Spanyol világbirodalom születését.

A sors fintora, hogy a reconquista utáni Spanyolország szinte csak nemesekből és nincstelenekből álló társadalma nem volt képes az Újvilág kincseit befogadni, ezek nagyon hamar elfolytak az országból. Spanyolországot a fél világ meghódítása és a fantasztikus kincsek özöne is csak még szegényebbé tette, hiszen nem volt polgári réteg, kereskedők, szakemberek, ipar, bankrendszer. A beáramló érték tovább folyt külföldi országokba, főleg a Németalföldre.



Források:

Burakov, D. (2017) “Do Sunspots Matter for Cycles in Agricultural Lending: a VEC Approach to Russian Wheat Market”, AGRIS on-line Papers in Economics and Informatics, Vol. 9, No. 1, pp. 17 – 31. ISSN 1804-1930. DOI 10.7160/aol.2017.090102. DOI: 10.7160/aol.2017.090102

Easterbrook, D.J.: Evidence-Based Climate Science, ISBN978-0-12-804588-6 

Fizikai Szemle, Kozmikus sugárzás és csillagászat. 1999/1.

Grove, Jean M.; Switsur, Roy (1994): “Glacial geological evidence for the medieval warm period”

Herrera et al.: Reconstruction and prediction of the total solar irradiance: From the Medieval Warm Period to the 21st century. New Astronomy Volume 34, January 2015, Pages 221-233

LiveScience: Humans Crossed the Bering Land Bridge to People the Americas,
https://www.livescience.com/64786-beringia-map-during-ice-age.html

Mann, M. E.; Zhang, Z.; Rutherford, S.; et al. (2009): “Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly” (http://www.geo.umass.edu/climate/papers2/Mann2009.pdf)

McClellan, Tom: Sunspots – The Real Cause of Higher Grain Prices
(http://time-price-research-astrofin.blogspot.com/2017/02/sunspots-real-cause-of-higher-grain.html)


Meadows, A. J. (1975), A hundred years of controversy over sunspots and weather, Nature, 256, 95–97.

NASA’s SDO Observes Largest Sunspot of the Solar Cycle: https://www.nasa.gov/content/goddard/sdo-observes-largest-sunspot-of-the-solar-cycle/

National Geographic, Ancient DNA reveals complex migrations of the first Americans.
https://www.nationalgeographic.com/science/2018/11/ancient-dna-reveals-complex-migrations-first-americans/

Philip Ball: Sun set food prices in the Middle Ages, Nature. (https://www.nature.com/articles/news031215-12)

Potgeiter, M. (2013). “Solar Modulation of Cosmic Rays”. Living Reviews in Solar Physics. https://ui.adsabs.harvard.edu/abs/2013LRSP…10….3P/abstract

Pustilnik, L.A., G. Yom Din: Space Climate Manifestation in Earth Prices – from Medieval England Up to Modern Usa
(https://arxiv.org/abs/astro-ph/0411165)

Science Direct: Medieval Warm Period
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/medieval-warm-period

Solar cycle variations and cosmic rays. Journal of Atmospheric and Solar-Terrestrial Physics, Volume 70, Issues 2–4, February 2008, Pages 207-218. https://www.sciencedirect.com/science/article/abs/pii/S1364682607002726

SolarStorms, Cosmic Rays Received,
http://www.solarstorms.org/Scosmic.html

Steinhilber et al.: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings, https://www.pnas.org/content/109/16/5967

Tarassov, Sergey: Sunspot activity and stock market. http://www.timingsolution.com/TS/Articles/sunspot/

University of Delaware, Cosmic Rays and the Solar Cycle,
http://neutronm.bartol.udel.edu/catch/cr3.html

U.S. Geological Survey, The Sun and Climate. U.S. Geological Survey Fact Sheet 0095-00
https://pubs.usgs.gov/fs/fs-0095-00/

Szolárgráfia – a Nap égi útjának rögzítése

Szerző: Balázs Gábor

Aki a földrajzban jártas tudja, hogy a Föld tengelyferdesége miatt az egy éves keringési idő alatt a napsugarak beesési szöge folyamatosan változik. Ennek következménye, hogy eltérő lesz a felmelegedés bizonyos időszakokban, aminek velejárója az évszakok váltakozása. Egy másik következménye a szoláris éghajlati övek (szoláris forró vagy trópusi, mérsékelt és hideg éghajlati övek) kialakulása.

Ennek a keringésnek általunk látható része hosszúsági foktól függetlenül, hogy az északi féltekén nyáron magasabban, télen alacsonyabban szeli át a Nap az eget (a déli féltekén pedig fordítva). Ennek rögzítésére jött létre a szolárgráfia, ami egy igen egyszerű szerkezeten alapszik, egy lyukkamerán más néven camera obscura.

Forrás: Gravitáció Blog

Magyarázat röviden: ez egy fénytől védett test oldalán egy kis lyukkal. Az ezen a lyukon bejutott fény pedig a szemben lévő oldalra fordított képet ad (hasonlóan a mai fényképezőgépekhez).

Érdekessége hogy rövid idejű történéseket nem képes rögzíteni, gondolva az eszköz előtt elhaladó autókra vagy gyalogosokra. A „kamera” alapját egy hengeres test adja, melynek belsejét matt bevonattal bevonják az esetleges tükröződésből keletkező plusz sávok ellen. Erre a doboz méretétől függően egy 0,3-0,5 mm-es lyukat készítenek, majd egy fényérzékeny fotópapírt helyeznek el benne (a lyukkal szemben) amire majd a Nap útja „ráég”.

Elhelyezését tekintve a rajta lévő lyuk dél felé néz és mozdulatlannak kell maradnia egészen a leszereléséig (1 hetes – 6 hónapos időintervallum). A garantáltan látványos végeredmény érdekében ideális esetben a két napforduló között (június 21. – december 21. vagy december 21. – június 21.) gyűjti eszközünk Napunk fényét, de akár egy hónapon keresztül történő exponálásból is keletkezhet látványos kép.

Saját felvételemet tekintve a tarjáni MTT-n kapott szolárgráfom vetettem be 2016. augusztus 1-e és január vége között, de a rossz rögzítés és az időintervallum miatt a sávok egymásra „égtek” és egymáshoz képest elcsúsztak.

Végezetül, egy kis segítség a kép értelmezéséhez, mivel folyamatos fényes, sötét és szaggatott sávok váltják egymást:

  • a folyamatos fényes sávok egy derült napot,
  • a folyamatos sötét sávok egy teljesen borult és/vagy esős napot,
  • a nem folyamatos, szaggatott sávok egy felhős napot jelentenek.

Naprendszerünk más léptékben

Szerző: Szklenár Tamás

Mindennapi életünkben könnyedén fel tudunk dolgozni olyan távolságokat, amelyek számunkra megszokott léptéket képviselnek, így nem esik nehezünkre tervezni olyan távolságokkal, amelyek lakóhelyünkön belül vagy hazai városok között jellemzőek. Külföldi utazások, hosszabb utak alkalmával tudatosul igazán bennünk bolygónk valós mérete. A Föld önmagában hatalmas és a modern közlekedési eszközök nélkül, gyalogosan bejárni élethosszig tartó küldetés lenne. Viszont amint kilépünk a bolygóközi, sőt csillagközi térbe, a mindennapi távolságok eltörpülnek a Világegyetem méretei mellett.

Ahhoz, hogy ezeket a léptékeket megfelelően ábrázolhassuk, arányosan átméretezett modellekre van szükségünk. Így nem csak az égitestek egymáshoz viszonyított méretét, hanem azok távolságát is érzékeltetni tudjuk. Ebben a cikkben olyan méretskálát alkalmazunk, amelyet könnyedén elkészíthet mindenki, felhasználható bárki számára, aki érdeklődik a téma iránt, de az oktatásban, szakkörök számára is hasznos lehet. Számításaink az égitestek jelenleg ismert átlagos sugarán és Naptól vett távolságán alapulnak.

Kezdjük egy egyszerűbb esettel és próbáljuk meg modellezni a Föld és Hold rendszerét. Földünk átlagsugara – kerekítve – 6373 km, így átmérője 12 746 km, a Hold esetében utóbbi 3475 km (3,7-szeres méretkülönbség). A két égitest átlagos távolsága 384 399 km. Ez még egy viszonylag könnyebben elképzelhető távolság annak, aki sokat vezet élete során. Olyan modellt kell készítenünk, amely befér egy nagyobb szobába, esetleg osztályterembe. Legyen a két égitestünk arányosan megváltoztatott távolsága 5 méter! Ebben az esetben Földünk modellje 16,6 cm átmérőjű, míg a Hold átmérője 4.5 cm. Előbbi számára használhatunk egy 2-es méretű futball- vagy kézilabdát, utóbbi részére egy pingponglabda is megfelelő.

Érdekességképpen vegyük hozzá Napunkat is ehhez a modellhez! Központi csillagunk átmérője ebben az esetben egy nagyobbacska busz hossza, kerekítve 18 m, amelyet a már elkészített Föld-Hold modelltől 2 km-re kellene elhelyeznünk.

Ebből rögtön látszik, hogy amint kilépünk a Föld-Hold rendszerből, a méretek modellezése igen problémássá válik. Kis számolással és egy nagyobb léptékű kicsinyítéssel azonban megoldható a dolog. A Nap átmérője kerekítve 110-szerese bolygónkénak. Ez lesz a kiindulópontunk. A modellünket pedig helyezzük el egy focipályán, amelyből bárki könnyűszerrel talál egyet az országban. A futballpályák hivatalos mérete igen tág skálán mozog, a csatolt képen látható pálya hossza 109 méter (a cikk írója szülővárosának, a szarvasi sportpályának méretét használta).

A Naprendszer „focipálya modell”

Új modellünkben a Nap átmérője 110 mm, míg Földünké 1 mm. A valóságban a két égitest távolsága 150 millió km, amelyet 1 Csillagászati Egységnek is nevezünk. Helyezzük napmodellünket, a 11 cm átmérőjű gömböt (labdát) a gólvonalra, ettől kezdve ő lesz a kapusunk! Ettől 11,86 m-re lesz Földünk, így szinte kijelöli a büntető pontját is. A további távolságokat és méreteket táblázatos formában láthatják olvasóink.

Naprendszerünk négy kőzetbolygója, a Merkúr, Vénusz, Föld és a Mars helyezkedik el legközelebb központi csillagunkhoz. Modellünkben a Mars már éppen nem fér a tizenhatoson belülre.

A Mars és a Jupiter között elhelyezkedő aszteroidaöv még bőven ebben a térfélben található.

A Jupiter, Naprendszerünk legnagyobb bolygója már a másik térfélre kerül, a Szaturnusz pedig már éppen lecsúszik a pályáról.

Amennyiben szeretnék az Uránuszt és a Neptunuszt is ábrázolni, úgy még több egymás mögé festett pályára van szükségünk. Az Uránusz 228 m-re lenne a kapustól (Nap), míg a Neptunusz távolsága ebben a méretskálában 357 m-nek adódna. A hányattatott sorsú Plútó közel fél km-re kerülne kapusunktól.

Nem teljesen tisztázott, hogy Naprendszerünk határa hol húzódik, nem tudjuk pontosan, hogy mikor lépünk át a csillagközi térbe. A Naprendszer jelenleg elfogadott sugara körülbelül 100 000 Csillagászati Egység, ez mintegy 1,5 fényév. Focipálya modellünkben ez a határ 1186 km-re lenne, egészen Amszterdam városáig kellene utaznunk.

Miután már képzeletben kiléptünk a csillagközi térbe, látogassuk meg legközelebbi csillagszomszédunkat! A Naphoz legközelebb elhelyezkedő csillag a Proxima Centauri, amelynek távolsága 4,2 fényév. Jelenlegi technológiai eszközeinkkel ez emberi időskálán elérhetetlen távolság, de kis modellünkben elég, ha Izlandig utazunk, Reykjavík városáig.

Égitest Modell mérete Modell távolsága
Nap 110 mm
Merkúr 0,4 mm 3,65 m
Vénusz 0,95 mm 8,6 m
Föld 1 mm 11,86 m
Mars 0,5 mm 18 m
Jupiter 11,2 mm 61,7 m
Szaturnusz 9,5 mm 113,6 m
Uránusz 4 mm 228 m
Neptunusz 3,9 mm 357 m
Plútó 0,19 mm 474 m
Naprendszer határa 1186 km
Proxima Centauri 17 mm 3183 km

Valószínűleg már kellőképpen zsong fejünk a sok-sok számadattól és Naprendszerünk, illetve az Univerzum méreteitől, azonban egy utolsó adattal még szolgálnunk kell. Naprendszerünk a Tejútrendszer nevű galaxis, egy hatalmas és lenyűgöző csillagváros részét képezi, amelyben jelenleg körülbelül 200-400 milliárd csillag található. Galaxisunk modellbeli átmérője éppen akkora lenne, mint Földünk és a Nap valós távolsága, 1 Csillagászati Egység, vagyis 150 millió kilométer. Ebben a hatalmas méretskálában pedig ott a mi focipálya modellünk, amely talán egy kicsit segíthet a körülöttünk lévő világ méreteinek megértésében.

Vulcan, a sosemvolt bolygó

Szerző: Kovács Gergő

1840-et írunk. A francia matematikus, Urbain Jean Joseph Le Verrier a Merkúr pályáját tanulmányozta. Munkáiban a planéta mozgását a newtoni fizika eszközeivel akarta előrejelezni, azonban a bolygó előre kiszámított pályája és az égitest tényleges mozgása között – a legpontosabb számítások ellenére – folyamatosan maradtak különbségek. Le Verrier 14 darab, 1697 és 1848 közötti Merkúr-átvonulást vizsgálva arra a következtetésre jutott, hogy a bolygó napközelpontja (más néven perihéliumpontja) egy év alatt 0,43 ívmásodpercet mozdul el az égen. Ezt az eltérést a matematikus egy eddig felfedezetlen, a Nap és a Merkúr közt keringő bolygónak tulajdonította. Az égitestet Vulcannak/Vulcanusnak nevezte el, a tűzhányók, kovácsolás és sivatagok római istene után.

Urbain Jean Joseph Le Verrier (1811-1877)

Le Verrier tézisét az is alátámasztotta, hogy a pályaháborgásokat figyelembe véve már sikerült felfedeznie egy bolygót, a Neptunuszt, 1846-ban. Az égitestre az Uránusz pályájában keletkező zavarok vizsgálata során bukkant rá, a Neptunusz pedig ott volt, az égbolt azon szegletében, ahol azt Le Verrier előre kiszámította. A sors iróniája, hogy az angol John Couch Adams számításai is helyesek voltak a Neptunusz térbeli helyzetét illetően, azonban Sir George Airy, angol királyi csillagász és a Cambridge-i obszervatórium vezetője, James Challis “mulasztásai” által a Neptunusz felfedezése Le Verrier és a berlini csillagda igazgatója, Johann Gottfried Galle érdeme lett.

Le Verrier riadóztatta a csillagász “társadalmat”, melynek köszönhetően a Vulcan a nemzetközi bolygóvadászat fő célpontja lett. Egyesek, például Edmond Modeste Lescarbault, saját készítésű teleszkópjával látni vélte a bolygót, mint a Nap korongja előtt gyorsan elhaladó apró pontot. A szkeptikus hangok és a bizonytalan megfigyelések ellenére Le Verrier elmélete masszívan tartotta magát, még az 1877-ben bekövetkező halála után is. Sőt, egy 1878-ban bekövetkezett napfogyatkozás kiváló alkalmat kínált (volna) a Vulcan megfigyelésére. Neves csillagászok vélték látni a bolygót, a nagy hírverés után, miszerint felfedezték a bolygót, kiderült, hogy csillagok voltak csupán…

A Vulcan-t még mindig nem látta senki, továbbá a Merkúr különös, gravitációs módon zavart (ún. perturbált) mozgásának oka továbbra is ismeretlen maradt. Ennek ellenére rengeteg tudós, köztük hazai csillagászok is, felfokozott érdeklődést tanúsítottak a bolygó iránt:


Kassai Raisz Miksa: A vulkán bolygó

Több év óta a naprendszerhez tartozó bolygók abszolút mozgása mathematikai törvényeinek kiszámításával foglalkozván, számításaimnak egyik eredménye azon következtetésre vezetett, hogy a Nap és Merkur közt még egy bolygónak – a több csillagásztól is feltételezett – Vulkán bolygónak kell léteznie. Erre nézve számításom eredménye a következő:

A VULKÁN bolygó átmérője (tengelye) = 724.9752 km.; útja pályájában egy nap alatt 5,502,355 km.; egy óra alatt 229,264 km.; tropikus mozgása egy nap alatt 98,059.16 km.; a Naptól való távolsága 11,436,932 km. Évi periodikus mozgását 13.21651 nap alatt végzi.

Természettudományi Közlöny XCIII. kötet, 202-ik füzet

1886 június


A Vulcan keresése még több évtizedig folytatódott, de tényleges felfedezés soha nem született, hisz’ soha nem is létezett ez a planéta. Majd 1915-ben bombaként robbant a tudományos világba Einstein relativitáselmélete, mely tökéletesen megmagyarázott mindent, így a Vulcan nemlétét is: az einsteini fizika szerint a Nap óriási tömege miatt képes “meggörbíteni a teret és időt”, a Merkúr pedig olyan közel kering központi csillagunkhoz, hogy már ebben az eltorzult téridőben kering. Az einsteini fizika így magyarázatot adott a Merkúr különös mozgására, többek között a bolygó perihéliumvándorlására is. Ezt a jelenséget, vagyis az égitest napközelpontjának folyamatos mozgását a klasszikus, newtoni fizika csupán egy másik égitest zavaró hatásával tudta megmagyarázni.

A Merkúr perihéliumvándorlása

Ahogy Isaac Asimov mondta, a Vulcan örökre le lett radírozva az égboltról. A csillagászok nyilvántartásaiból ki-, a térképekről lekerült. A korábban történt bolygóészlelések pedig minden bizonnyal napfoltok vagy csillagok voltak. A Vulcan története pedig arra tanította az embert, hogy a természet törvényei bonyolultabbak, mint hinné.

Források: [1] [2] [3] [4]