Bolygóvonat a hajnali égen, nézzük mi várható valójában

Szerző: Balázs Gábor

Bolygók sorakoznak a hajnali égen, egymás után rendre, szépen. De mi is fog történni a következő hajnalokon? Fontos leszögezni, nem az, amit oly sok helyen olvastunk az eseményről. Ennek a bolygósorakozónak tudományos jelentősége nincs, pusztán egy szép égi látványosság, sőt, hogy több bolygó látszik, máskor is megtörténik. Volt hasonló decemberben az esti égen, 2020 tavaszán és még előtte 2016-ban is. Ebből következik, hogy maga a bolygósorakozó nem egy ritka jelenség.

Bolygósor az esti égen 2020 decemberében

De akkor miért érdekes, ha nem ritka? Lényegében azért, mert a bolygók keletről nyugat felé haladva (balról jobbra) a Naptól való távolságuk sorrendjében láthatóak. De ez sem évezredenként egyszer. 2004 decemberében voltak a bolygók legutóbb hasonló sorrendben. A különbség most csupán annyi, hogy a bolygók közelebb látszódnak egymáshoz.

A bolygók állása 2004 decemberében (Forrás: Stellarium)

És nem kell évszázadokat várni a következőre sem. A sorrend 2040-ben ismét a Naptól való távolság szerint fog alakulni. Hogy minden bolygót láthatunk egy időben az égen, az egy másik kérdés. Ez utoljára 2020-ban történt meg és legközelebb 2161-ben lesz megfigyelhető.

Tehát miért különleges a mostani? Mert az előző kettő egy időben történik. Ugyanabban az időben minden bolygót megfigyelhetünk, ezek közül négyet szabad szemmel is láthatunk. Mindezt a bolygók Naptól való távolsága szerinti egymásutánban. Ez az egybeesés az, ami ténylegesen különlegessé teszi az elkövetkező hajnalokon látható bolygósort. Magát a sorrendet csupán az Uránusz és a Neptunusz töri meg, de ezeket a látvány tetőpontján már szabad szemmel most nem láthatjuk.

Hogyan látszik most és mikor lesz a legszebb?

Maguk a bolygók fényes csillagokként tűnnek fel a hajnali égen kelet, délkelet felé, mikor már pirkad. Először május végén, La Palmán fotóztam a már hasonló formációban álló bolygókat.

A június végén látható bolygósor május 25-én La Palma szigetéről. A délebbi részeken az együttállás látványosabb lesz a horizonttól való magasság miatt (nagyobb méretben itt)

Legutóbb június 13-án hajnalban készült kép már úgy a bolygósorról, ahogyan látszódni fog néhány nap múlva. Persze addig a bolygók elhelyezkedése picit változik.

A júniusi felállás 13-án hajnalban a szerző felvételén (nagyobb méretben itt)

Ahogy több helyen is írták, június 17. és 28. között lesz a legszebb a bolygóvonat látványa. De miért pont akkor? A bolygósorhoz június második felében csatlakozik a Merkúr, illetve ezekben a napokban az egyre csökkenő fázisú Hold szép együttállásokkal kápráztatja el a koránkelőket. Maga a bolygósor még július legelején is látható lesz, igaz, már a Merkúr és a Hold nélkül.

Vegyünk egy, a két szélső időpont közötti dátumot. Legyen június 22. Elsőként a Szaturnusz kerül a horizont felé 0:05 után. Mivel a ténylegesen látható bolygókról lesz most szó, így a soron következő a fényes Jupiter 1:27-től. Őt nemsokkal égi kísérőnk, a Hold fogja követni. 2 óra után már látható a földközelségéhez közeledő vöröses csillag, a Mars. Utóbbi három 25-én szép hármas együttállásban lesznek megfigyelhetők.

Mars-Hold-Jupiter hármas együttállás június 22-én. Ezt az együttállást érdemes már 3 óra környékén megkeresni (Forrás: Stellarium)
A Mars, a Hold és a Jupiter együttállása május 25-én a szerző felvételén La Palma szigetéről. Hasonló látványra számíthatunk 22-én is, mindössze a Mars és a Jupiter lesz kissé távolabb egymástól (nagyobb méretben itt)

2:54-től már elméletben látható az Uránusz is. Ez a bolygó vidéki égbolton szabad szemmel halvány csillagként, de látható, de jelen esetben a szürkületi égbolt fénye miatt mi már nem láthatjuk. A látható bolygókhoz utoljára a Vénusz fog csatlakozni 3:38-tól. Őt a Merkúr követi, de fontos leszögezni, hogy nagyon alacsonyan lesz a horizont felett, így több mint valószínű, hogy ez a bolygó már elveszik a felkelő Nap fényében.

Forrás: Stellarium
A Naprendszer június 22-én. A nyíl mutatja, merre nézünk hajnalban. Forrás: https://www.theplanetstoday.com/

De mi szükséges a megfigyeléshez? Elsősorban fontos szem előtt tartanunk, hogy nem lesz szabad szemmel látható a Naprendszer összes bolygója. Második legfontosabb, szinte tökéletesen tiszta keleti, délkeleti horizontra lesz szükség ahhoz, hogy a legjobb időpontban láthassuk az összes látható bolygót.

Ahogy a fenti időpontokból is látszik, a teljes sor megfigyelésére igen rövid idő áll majd rendelkezésre. A Vénusz 3/4 4 felé lesz olyan magasan, hogy már jól látható legyen, de 4 óra után már a felkelő Nap fénye már folyamatosan elvesz a látványból az idő előrehaladtával. Ekkor már csak a négy, fényesebb bolygó (Vénusz, Mars, Jupiter, Szaturnusz) fog látszódni. Távcsővel ezt a jelenséget nem érdemes megfigyelni, hiszen maguk a bolygók 105 fokos látószögben sorakoznak. Ez a jelenség tényleg a csak szabad szemes alkalmak egyike. Ellenben aki a bolygókat távcsővel szeretné megnézni, azok ténylegesen láthatják a legtöbb bolygót. Akár még a Merkúrt is.

És ha le szeretném fotózni?

Első és legfontosabb: egy stabil állvány. Enélkül igen nehéz lesz a jelenség megörökítése. A bolygók az égbolton szétszórva lesznek, így a lehető legkisebb gyújtótávolságú objektívünket vegyük elő. Így sem biztos, hogy egy képen látszódni fog az összes bolygó, ezért nagy valószínűséggel panorámafotót kell készítenünk. A fentebb látható, június 13-án készült fotó is egy 3 képes panorámafotó.

Ha már objektív. A csillagokat pontszerűnek látjuk és törekedünk arra, hogy a képeken is annak lássuk őket. Hogy ne hosszú csíkok legyenek a csillagok és persze a fő attrakciók, a bolygók, be kell tartanunk az 500-as szabályt. Röviden elmagyarázva: 500-at elosztjuk az általunk használt objektív gyújtótávolságával így megkapjuk azt a leghosszabb záridőt másodpercben, aminek használatával még pontszerűek maradnak a csillagok. Ha viszont NEM full frame fényképezőgépet használunk, ezt az értéket tovább kell osztani 1,6-al. A számítás szemléltetéséhez a Canon 2000D-t és egy alap 18-55-ös objektívet veszek alapul. A legkisebb gyújtótávolsága 18 mm. 500/18 eredménye 27,8. Mivel crop szenzoros gépről van szó, ezért tovább kell osztani 1,6-al. 27,8/1,6 eredménye 17,4 így a leghosszabb használható záridő 17 másodperc.

Full frame gép esetében: 500/fobj

Crop szenzoros gép esetében: (500/fobj)/1,6

Akik pedig az együttállások között szeretnének válogatni, azoknak összeszedtem a Hold együttállásait 18-a és 27-e között. (A képek az adott dátum égboltjának 3:55 perckori állapotát mutatják.)

Először a Hold a Szaturnusz közelíti meg 18-án.

A bolygósor 18-án hajnalban. Forrás: Stellarium

Majd 21-e és 23-a között a Jupiter és a Mars közelében láthatjuk égi kísérőnket.

A bolygósor 21-én hajnalban. Ekkor a Hold a Jupitert látogatja meg. Forrás: Stellarium
A bolygósor 22-én hajnalban. Forrás: Stellarium
A bolygósor 23-án hajnalban. A Mars bolygó mellett láthatjuk az egyre fogyó Holdat. Forrás: Stellarium

Bónusz: 26-án hajnalban a vékony hajnali holdsarló a Vénusz és a Fiastyúk nyílthalmaz között fog elhaladni. Ennek sikeres megfigyelése, netán megörökítése igazán maradandó élmény.

Hold-Vénusz-Fiastyúk együttállás 26-án. Forrás: Stellarium
A bolygósor 26-án hajnalban. Forrás: Stellarium

És egy igazi kihívás:

A bolygósor 27-én hajnalban. Forrás: Stellarium

A Merkúr geomágneses viharai

Szerző: Gombai Norbert

Egy kanadai, amerikai és kínai tudósokból álló csoport bebizonyította, hogy a Merkúron, Naprendszerünk legkisebb bolygóján a földihez hasonló geomágneses viharok keletkeznek. A felfedezés egyértelmű választ ad arra a kérdésre, hogy más bolygókon – beleértve a Naprendszerünkön kívülieket is – kialakulhatnak-e napkitöréseket követő geomágneses viharok, függetlenül a magnetoszférájuk méretétől, szerkezetétől, illetve attól, hogy rendelkeznek-e a Földünkhöz hasonló ionoszférával.

A Merkúr bolygó a Messenger űrszonda felvételén (forrás: NASA)

Geomágneses viharokat, vagyis egy bolygó magnetoszférájának jelentős, de átmeneti zavarait a napszél nagy sebességű áramlása, valamint a központi csillag koronakidobódása eredményezhet. A koronakidobódás (CME – Coronal Mass Ejection) a Nap plazmájának töltött részecskékből álló, kilövellő felhője. Az ilyen viharoknak köszönhetően jönnek létre a Föld magnetoszférájában megfigyelhető sarki fény jelenségek, de a jelenség adott esetben kommunikációs, navigációs, vagy éppen energiaellátási zavarokat is okozhat.

Koronakidobódás a NASA számítógépes grafikáján (forrás: NASA)

A felfedezést tárgyaló tanulmányok, amelyeket az Alaszkai Egyetem (Fairbanks) tett közzé, egy véletlen egybeesésnek köszönhető kutatás eredményei alapján készültek. A Napon 2015. április 8-18. között sorozatos koronakidobódások történtek. Eközben, a NASA 2004-ben indított bolygókutató űrszondája a Messenger 2015. áprilisában küldetésének végére ért és a Merkúr felszíne felé közelítve egyre lejjebb ereszkedett, mígnem április 30-án a bolygó felszínébe csapódott.

A Messenger űrszonda becsapódási területe a Merkúron (forrás: NASA)

Egy 2015. április 14-én megfigyelt koronakidobódás kulcsfontosságúnak bizonyult a tudósok számára. A napkitörés a felszín felé süllyedő Messenger adatainak tanúsága szerint összenyomta a Merkúr körül fánk alakban, oldalirányban áramló töltött részecskékből álló mágneses mezejét a Nap felé néző oldalon, és megnövelte az áram energiáját. A gyűrűáramlás felerősödése – a Földhöz hasonlóan – a geomágneses vihar fő fázisát jelentette.

A Merkúr felszíne a Messenger felvételén (forrás: NASA)

Mivel a Merkúron nincsen olyan légkör, amelynek részecskéi kölcsönhatásba tudnának lépni a napszéllel, így a geomágneses viharok nem okoznak sarki fény jelenségeket. A napszél akadálytalanul éri el a felszínt jelentősen megnövelve a röntgen- és gammasugárzást. Bár a Merkúr mágneses tere sok szempontból eltér a Föld magnetoszférájától, a megfigyelt folyamatok mégis nagyon hasonlóak voltak a Földön észlelt mágneses viharokoz.

A búcsúzó Messenger segítségével kapott eredmények további lenyűgöző betekintést nyújtanak a Merkúr bolygónak a Naprendszer fejlődésében elfoglalt helyére.

Ismerős idegenek – avagy Naprendszerünk a Science Fiction univerzumában – I. rész

Szerző: Ivanics-Rieger Klaudia

Bevezető

Számtalan lehetőségünk van arra, hogy megismerjük a Naprendszerünket. Elég csak kinyitnunk egy tudományos könyvet, átkapcsolni a tévét egy ismeretterjesztő csatornára vagy követni egy ismeretterjesztő oldalt az interneten, esetleg ilyen ismertető videókat nézni. A következő cikksorozatban azonban a Naprendszert egy új oldaláról ismerhetjük meg. A sorozat a tudományos fikció világába kalauzol el minket. Égitestről égitestre haladva ismerhetjük meg, hogy az adott objektum miként jelenik meg a sci-fikben, a könyvek lapjain csak úgy, mint a mozivásznon. Elsősorban azokra a művekre koncentráltam, amik a hazai science-fiction rajongók körében jól ismertek. Akik már látták, olvasták őket, azok számára nyilván ismerős a terep, akik még nem, azoknak remélem, sikerül kedvet csinálni. Utazásunk során belülről kifelé haladunk, a belső bolygókkal kezdjük és a Naprendszer határán fejezzük be, s közben felfedezzük ismerős égitesteink idegen oldalát.

A Naprendszerről szóló korai szakirodalom a 17. századig visszanyúló tudományos spekulációk nyomán azt feltételezte, hogy minden bolygó saját őshonos életformának ad otthont, emellett gyakran feltételezik, hogy lakói antropomorfok. Ezeket az elképzeléseket ma bolygóromantikának hívjuk. A tudomány fejlődésével aztán a sci-fik is igyekeztek lépést tartani. Míg először csak a holdutazás foglalkoztatta őket, a 20. századtól megjelent a Mars kolonizálása és/vagy terraformálása, s az élet lehetőségeit is áthelyezték a gázóriások egyes holdjaira (mint például az Europa és az Enceladus).

Merkúr

A science-fiction irodalomban szokás megkülönböztetni a régi és az új Merkúrról írók csoportját. A régi Merkúr leírások 1965 előtt születtek, a közös az volt bennük, hogy a bolygó kötött keringésű (mint a Hold) és van sötét, illetve világos oldala. A régi Merkúr egy kietlen világ, ahol az élet és a halál a sötétség és világosság határán, a lassan mozgó terminátor vonal körül forog. Miután ez az elmélet megdőlt, születtek az új Merkúrról szóló írások, melyek már tükrözik a hivatalos tudományos felfedezéseket.

Isaac Asimov Körbe-körbe című novellája 2015-ben játszódik. Két űrhajós egy Sebi nevű robottal felmérnek egy régi bázist a bolygón. A robotot szeléniumért küldik, csakhogy az nem tér vissza. Végül kénytelenek utána menni, kockáztatva, hogy a hővédő ruhájuk feladja, ők pedig megsülnek. Sebit meglátva rájönnek, hogy az a robotika II. és III. törvénye miatt lett üzemzavaros és inkább fogócskázni akar. Ennek megértéséhez idézzük fel a robotika három törvényét:

„1. A robotnak nem szabad kárt okoznia emberi lényben, vagy tétlenül tűrnie, hogy emberi lény bármilyen kárt szenvedjen.

2. A robot engedelmeskedni tartozik az emberi lények utasításainak, kivéve, ha ezek az utasítások az első törvény előírásaiba ütköznének.

3. A robot tartozik saját védelméről gondoskodni, amennyiben ez nem ütközik az első vagy második törvény bármelyikének előírásaiba.”

A szeléngyűjtés pedig elég veszélyes volt ahhoz, hogy a III. és II. törvény ütközzön egymással. Végül az első törvény segítségével igyekeznek megoldani a helyzetet: az egyik űrhajós kockáztatja az életét és majdnem megsül, mire Sebi visszaviszi a sötét oldalon lévő bázisra.

Az Űrvadász-sorozat Lucky Starr és a Merkúr óriás napja című kisregényében főhősünk, David „Lucky” Starr és társa, Colos a merkúri bányák ügyében nyomoznak, melyek már kimerülőben vannak és állítólag kísértetek is lakják a bolygót, amik állandóan baleseteket okoznak. Végül kiderül, hogy szellemek ugyan nem léteznek, de a bányákban élnek helyi létformák.

Arthur C. Clarke már a régi Merkúrról is írt, a Szigetek az égben című regényében ködösen utalnak egy idegen létformára, mely megosztja az emberiséggel a Naprendszert. Ezek a létformák nem intelligensek, és az egyik szereplő szerint a Merkúr sötét felén élnek.

Viszont a Randevú a Rámával című regényfolyamban a Merkúron már zajlik az élet: a bolygót fémbányászok forrófejű kormánya uralja, akik azzal fenyegetőznek, hogy elpusztítják a Rámát (ami ugyebár egy idegenek által épített szerkezet). Kim Stanley Robinson 2312 című hard sci-fi-je az egész Naprendszeren átível. A Merkúr ebben egy vezető erőt képez, az egyéb apróbb élőhelyeket a Mondragon-egyezmény fogja laza szövetségbe, melynek a bolygó a központja és a főszereplő is onnan származik.

Vénusz

Sokáig áthatolhatatlan felhőtakarója szabad utat adott a science-ficton íróknak, hogy élettel töltsék meg ezen ismeretlen világot. Főként az után, hogy kiderült, a Földhöz hasonló méretű bolygó jelentős atmoszférával rendelkezik. Mivel közelebb van a Naphoz, lakható, meleg, szinte trópusi éghajlatú (és növényzetű) világként ábrázolták, melyen – nevéből kiindulva – harcos amazonok élnek. A korai írókat alapvetően három csoportra bonthatjuk: egyesek óceánt vizionáltak a Vénuszra (hazánkban általában ezen könyvek jelentek meg). Mások mocsarat képzeltek a felszínre, esetleg szakadatlan esővel kiegészülve. A harmadik csoport ezektől eltérően inkább sivatagot favorizálja. Az ilyen jellegű művek főként 1930-50 közt voltak jellemzők. Azonban az első missziók eredményei szöges ellentétben álltak az addigi elképzelésekkel. A szerzők – ahogy a Merkúr esetében – itt is igyekeztek lépést tartani a tudományos eredményekkel és inkább a terraformálás lehetőségeire fókuszáltak.

Olaf Stapledon Az utolsó és az első emberek című regényében az emberiség a jövőben kénytelen átköltözni a Vénuszra, mivel a Hold bele fog csapódni a Földbe. A Vénuszt a szerző egy óceánoktól uralt bolygónak írja le, ahol heves trópusi viharok vannak.

C. S. Lewis Pelerandra című művében Pelerandrának hívják a Vénusz bolygót az ott élő helyiek. A bolygó a természet csodája: a rajta lakó élőlények szelídek, barátságosak, nem ismerik a félelmet. A tengerben úszó szigetek találhatók. Tulajdonképpen magáról az Édenkertről van szó, ahol még nem történt meg a bűnbeesés. Maga a regény egy kozmikus trilógia második része (Az első A csendes bolygó).

Arthur C. Clarke 3001 Űrodüsszeia című folytatásregényében a Vénuszt éppen terraformálják, amihez üstökösmagokra vadásznak, hogy azokat a Vénuszra szállítva alakítsák át a bolygó felszínét.

Térjünk vissza ismét Isaac Asimov főhősére, Lucky Starr-ra, aki a Vénuszra is eljutott nyomozása során a Lucky Starr és a Vénusz óceánjai című kisregényben. Ebben a bolygó egyik vízalatti kolóniáját fenyegeti pusztulás, annak ellenére, hogy a gazdasága gyorsan fejlődik. Egy, csak a Vénuszon élő újfajta élesztőgomba nemesítésével tudósok már közel járnak egy olyan élelmiszeripari alapanyag előállításához, mellyel örökre véget lehetne vetni a földi élelmiszerhiánynak és fontos exportcikket biztosítana a vénuszi gazdaságnak. A baktériumok körül azonban egyre gyanúsabb balesetek és „véletlenek” történnek. A krízis szálai a bolygó misztikus óceánjainak mélyére vezetik Lucky Starrt és hű segítőtársát, Colost. A több évtizednyi kolonizáció ellenére a Vénusz még mindig egy idegen bolygó, ismeretlen élőlényekkel és végtelen tengerekkel. Az író alaposan kidolgozott, a legapróbb részletekig átgondolt vénuszi ökológiát tár elénk, ami szerves részét képezi a cselekménynek.

Az új Vénuszról szóló művek már a 60-as évek után születtek. Frederik Pohl és C. M. Kornbluth A Vénusz-üzlet című regényében konkrétan áruba bocsátják az egész bolygót. Szőröstül-bőröstül. A tervet Amerika legnagyobb reklámügynökségének igazgatója eszeli ki. Meg is bíznak ezzel egy reeklámfőnököt, akinek feladata az egyelőre lakhatatlan bolygó céges tulajdonba vétele, reklámozása, eladása, egyszóval minden, amit cége jónak tart.

Kim Stanley Robinson 2312 című regényében a Vénuszt a kínaiak terraformálták. Ehhez egy óriási napernyőt használtak a Nap melegének elzárására, amely annyira lehűti a légkört, hogy a benne lévő szén-dioxid lefagyjon. A mesterséges kőzet a fagyott CO2 fölé kerül, hogy megakadályozza annak elszublimálását.

Egy másik, Naprendszeren (és azon túl) átívelő regényfolyam a Térség (The Expanse) James S. A. Corey sci-fije. A Vénusz itt fontos szerepet kap. Az Eros kisbolygó, melyet eluralt a Naprendszeren kívülről származó anyag, a protomolekula, ide csapódik be, s innen kiindulva kezdi felépíteni a Gyűrű nevű struktúrát, mely majd idegen világokba nyit utat…

Rekordgyorsan keringő kisbolygót fedeztek fel

Szerző: Kovács Gergő

Tíz napja, a chilei 570 megapixeles Dark Energy Camera (DECam – Sötét Energia Kamera) segítségével csillagászok tíz nappal ezelőtt felfedezték az eddig ismert legkisebb keringési idejű aszteroidát, számol be a Space.com. A hozzávetőlegesen 1 kilométer átmérőjű égitest mindössze 20 millió kilométerre (0,13 Cs.E-re) kering a Nap körül, 113 nap alatt megkerülve csillagunkat.

Fantáziarajz a 2021 PH27 jelű kisbolygóról (jobbra fent).
Kép forrása: CTIO/NOIRLab/NSF/AURA/J. da Silva (Spaceengine)

A 2021 PH27 nevű kisbolygó keringési idejénél csupán a merkúri év rövidebb, a legbelső bolygónk ugyanis mindössze 88 nap alatt tesz egy kört központi csillagunk körül. Az újonnan felfedezett kisbolygó azonban a Merkúrnál elnyúltabb pályával rendelkezik, így Napunkat akár 20 millió kilométerre is megközelítheti, szemben a Merkúr 47 millió kilométeres perihélium-távolságával.

Vulcan, a sosemvolt bolygó – újratöltve

Bolygótudományi portálunk, a Planetology.hu szakmai közreműködésével január 18-án hétfőn 18:00 órakor a Galileo Webcast tudományos tartalomszolgáltató csatornán folytatódott a virtuális térben a Gothard Jenő Csillagászati Egyesület (GAE) XLI. Megyei Csillagászati és Űrkutatási Hetek programsorozata. Felelős szerkesztőnk, Kovács Gergő geográfus, tudományos újságíró (Planetology.hu felelős szerkesztő), “Vulcan, a sosemvolt bolygó” címmel tartott előadást.




Felszínformák elnevezései bolygókon és holdakon

Sinus Iridum, Mare Imbrium, Hellas Planitia, Olympus Mons, Valles Marineris… megannyi idegen név, idegen égitesteken, de mit takarnak az egyes felszínalaktani formák elnevezései? Mi a Sinus? Mi a Valles? E cikkben felsoroljuk Naprendszerünk szilárd felszínű égitestjeinek legfőbb felszínformáit. Az alábbi felsorolás eredetijét a Nemzetközi Csillagászati Unió (IAU) egyik kiadványa (Transactions No. XVI-XVIIB) jelentette meg, melyet aztán a Föld és Ég c. folyóirat 1981 decemberi száma, később Hédervári Péter: Ismeretlen (?) Naprendszerünk c. 1986-os műve is átvett. E gyűjteményt továbbá kiegészítettük azon főbb felszínforma-típusokkal is, melyek a forrásban még nem szerepelnek, emellett aktualizáltuk is a felsorolást.

Az adott képződménytípust először egyes (majd többes) számú nevén olvashatjuk, mely után a magyar elnevezést (egyes esetekben az adott felszínformák nem rendelkeznek állandó magyar névvel, ezeket kérdőjellel láttuk el) és egy rövid felszínalaktani leírást is találunk.

Arcus (Arcus) – ív
– ívelt alakzat a Titanon

Astrum (Astra) – asztrum
– sugaras mintázatú terület a Vénuszon

Catena (Catenae) – kráterlánc
– kisebb, általában közel azonos méretű kráterek láncolatszerű sora

Az Enki Catena a Ganymedes felszínén
Fotó: NASA/JPL/Galileo. Forrás: Wikipedia

Cavus (Cavi) – üreg
– általában csoportosan előforduló, szabálytalan alakú, meredek falú mélyedések (katlanok)

Chaos (Chaosi) – káosz
– szabálytalan domborzatú, erősen lepusztult kiemelkedések zónája

Chasma (Chasmata) – kanyon
– hosszan kiterjedő, meredek falú, mély völgy

Collis (Colles) – domb
– kisméretű hegy vagy domb

Corona (Coronae) – korona
– kör vagy ellipszis formájú alakzat a Vénuszon, mely részben vagy teljesen koncentrikus formákból áll: általában egy perem és egy ezt körülvevő, árokszerű mélyedésből áll

Crater (Crateris) – kráter
– kifejezetten kör alakú, vulkáni vagy becsapódási eredetű mélyedés

A Herschel-kráter a Szaturnusz Mimas nevű holdján
Fotó: NASA/Cassini. Forrás: Wikipedia

Dorsum (Dorsi) – gerinc
– hosszan elnyúló, szabálytalan alakú, egyenes vagy görbült vonalú kiemelkedés

Facula (Faculae) – fáklya?
– világos folt

Farrum (Farra) – farrum?
– palacsintaszerű vulkanikus képződmények a Vénuszon

A Carmenta Farra palacsinta-szerű formái a Vénuszon
Fotó: NASA/JPL/Magellan. Forrás: Wikipedia

Flexus (Flexus) – hát
– nagyon alacsony, enyhén ívelt, hullámos mintázatú gerinc (a latin szó hajlatot jelent)

Fluctus (Fluctus) – lávafolyás?
– több száz kilométer hosszú lávafolyások, melyeknél a láva a forrástól tartósan egy irányba folyt

Flumen (Flumina) – csatorna?
– csatorna a Titan-on, mely folyadékot szállíthat

Fossa (Fossae) – árok
– hosszú, keskeny, sekély mélyedés(ek), lehetnek egyenesek vagy görbültek

Insula (Insulae) – sziget
– sziget vagy szigetcsoport, melyet folyékony anyagú terület (tenger vagy tó) vesz körül részben vagy teljesen

Labes (Labes) – csuszamlás?
– nyelv-formájú (föld)csuszamlás

Labyrinthus (Labyrinthi) – labirintus
– egymást keresztező, keskeny mélyedések, völgyek rendszere (pl. kereszttöréses rendszer)

A Labyrinthus Noctis, a Mars legnagyobb labirintusa
Fotó: NASA/Viking 1. Forrás: Wikipedia

Lacuna (Lacunae) – tómeder?
– szabálytalan formájú mélyedések a Titanon, melyek megjelenésüket tekintve kiszáradt tómedrek lehetnek

Lacus (Lacus) –
– kisebb méretű, szabálytalan körvonalú, sötét felszínű sík terület a Holdon, Merkúron, Marson (valamint pl. a Titanon – a szerk.)

Lenticula (Lenticulae) – lencse?
– kis méretű, sötét foltok az Europa felszínén

Linea (Lineae) – vonal
– sötét vagy fényes, keskeny, hosszan elnyúló képződmény, amely mind egyenes, mind görbült vonalú lehet

Macula (Maculae) – folt
– sötét, esetleg szabálytalan alakú képződmény

A Mordor Macula, a Charon sötét foltjának nem hivatalos elnevezése
Fotó: NASA/New Horizons. Forrás: Wikipedia

Mare (Maria) – tenger
– kerekded körvonalú, nagy kiterjedésű, sötét felszínű, sík terület (megjegyzés: néha azonban elnyúlt alakú, pl. a Mare Frigoris – H.P.)

Mensa (Mensae) – táblahegy
– lapos, sík tetejű és meredek, éles peremmel, körülhatárolt kiemelkedés (a latin szó “asztal”-t jelent)

Mons (Montis) – hegy
– a környezetéből határozott talapzattal kiemelkedő, viszonylag kis területű, minden oldalán lejtővel határolt, zárt térszíni kiemelkedés. Hegység: viszonylag nagyt területű, zárt, de völgyekkel és medencékkel jól tagolt, környezete fölé magasodó földrajzi egység. (Megjegyzés: az eredeti szövegben a meghatározások hiányoztak: az itt közölteket a Természettudományi Lexikon-ból vettük át – H.P.)

A marsi Olympus Mons, Naprendszerünk legmagasabb vulkánja
Fotó: NASA/Viking. Forrás: Wikipedia

Oceanus (Oceani) – óceán
– a Hold óriási kiterjedésű, sötét felszínű sík területe (csak az Oceanus Procellarum, azaz a Viharok Óceánja viseli ezt az elnevezést)

Palus (Paludius) – mocsár
– a Hold kisebb kiterjedésű, szabálytalan körvonalú, sötét mare- és fényesebb “szárazföldi” anyagot egyaránt tartalmazó területe(i)

Patera (Paterae) – sekély kráter
– szabálytalan vagy összetett szerkezetű, hullámos falú-peremű, sekély kráter (a latin szó eredetileg áldozati lapos “csészé”-t jelent)

Planitia (Planitiae) – alföld, medence
– sima felszínű, alacsonyan fekvő terület (medence, mélyföld)

Planum (Plani) – fennsík
– magasan fekvő, sima felületű terület, plató

Plume (Plumes) – jégvulkán?
– a vulkánok azon típusa a főként jégből álló törpebolygókon és holdakon, melyek olvadt kőzet helyett vizet, ammóniát vagy metánt lövellnek ki

Promontorium (Promontorii) – előhegység, hegyfok
– világosabb anyagú kiemelkedés a Holdon, amelyet sötétebb anyagú mare-területek vesznek körül (“félsziget“)

Regio (Regiones) – terület
– olyan nagyméretű vidék, amelyet fényvisszaverő képességének vagy színének elütő volta egyértelműen elhatárol a környezetétől

Reticulum (Reticula) – háló?
– háló(zat)szerű mintázatok a Vénuszon

Rima (Rimae) – hasadék
– keskeny, hosszú bemélyedés, repedés vagy lávacsatorna

Rupes (Rupis) – szakadék
– egyenes vonalú, meredek falú, lépcsőszerű leszakadás

A 20 kilométer magas Verona Rupes, a Naprendszer legnagyobb
ismert sziklafala az Uránusz Miranda nevű holdján
Fotó. NASA/JPL/Voyager 2. Forrás: Wikipedia

Saxum (Saxa) – szikla
– nagyobb méretű, határozottan elkülönülő sziklák az aszteroidákon

A (101955) Bennu aszteroida, felszínén több, jól elkülönülő sziklával (saxummal)
Fotó: NASA/OSIRIS-REx. Forrás: Wikipedia

Scopulus (Scopuli) – partfal
– olyan meredek falú leszakadás, amelynek peremvonala nagyon kanyargós vagy félszigetszerű

Serpens (Serpentes) – hullám
– elnyúlt, hosszában hol bemélyedő, hol kidomborodó, szinuszgörbe-szerűen hullámzó képződmény

Sinus (Sinus) – öböl
– a Hold mare-területeihez kapcsolódó, kisebb, sötét felszínű terület, amely beékelődik a mare-t határoló fényesebb, “szárazföldi” vidékbe (Megjegyzés: az öblök olyan kráterek, amelyeknek a medence felőli sáncfala hiányzik, valószínűleg azért, mert a medencéket elöntő bazaltos láva beolvasztotta és megsemmisítette azt – H.P.)

A Sinus Iridum a Hold felszínén. Kétoldalt egy-egy, félszigetként
beékelődő Promontorium, valamint a Mare Imbrium
Fotó: NASA/LRO. Forrás: Wikipedia

Solitudo (Solitudinis) – solitudo
– a Merkúr klasszikus, sötét árnyalatú (kis albedójú) képződményei, a szó eredeti jelentése: “hiány“, “magány” (ezt az elnevezést már nem használjuk – a szerk.)

Sulcus (Sulci) – barázda
– hosszan elnyúló, csaknem párhuzamos barázdák, kiemelkedések és mélyedések rendszere

Terra (Terrae) – föld, szárazföld
– hullámzó vagy durva felszínű, magasan elhelyezkedő, igen nagy kiterjedésű terület, hegyvidék (földi értelemben: szárazföld, kontinens)

Tessera (Tesserae) – mozaik
– csempeszerű, poligonális mintázatú felszín a Vénuszon

Tholus (Tholi) – domb
– különálló, kúp alakú domb vagy kisebb hegy (a latin eredeti kupolát jelent)

Unda (Undae) – dűne
– általában elnyúlt formájú domb, melynek anyaga elsősorban homok, ritkábban kavics vagy jég

Vallis (Valles) – völgy
– kanyargó, hosszan elnyúló mélyedés, esetleg elágazásokkal

A Valles Marineris, a Mars és a Naprendszer legnagyobb kanyonrendszere
Fotó: NASA/JPL/Viking 1. Forrás: Wikipedia

Vastitas (Vastitatis) – síkság
– a bolygó igen nagy részére kiterjedő lapos, sík vidék



Források:

Hédervári Péter: Ismeretlen (?) Naprendszerünk, 1986

Hargitai Henrik, Kozma Judit, Kereszturi Ákos, Bérczi Szaniszló, Dutkó András, Illés Erzsébet, Karátson Dávid, Sik András: Javaslat a planetológiai nevezéktan magyar rendszerére

Gazetteer of Planetary Nomenclature

Encyclopaedia of Planetary Landforms, 2014

Bolygós rövidhírek: zsugorodó Merkúr

Szerző: Rezsabek Nándor

Fotó: NAPA/JPL/MESSENGER

A Journal of Geophysical Research: Planets című szaklapban amerikai és kanadai kutatók a Merkúron található ún. sima síkságok (smooth plains) törésrendszereinek eredetével és geomorfológiájával foglalkoztak. A sima síkságok az aktív vulkanizmus során újraképződött felszín jellegzetességei. A megfigyelt törésvonalak 15-20 km mélységig húzódnak a kéregben. A kutatások megállapították, hogy a többezernyi tektonikus vető kialakulását a Merkúr magjának és köpenyének lassú lehűlése során bekövetkező kéreg-összehúzódás okozta. Ennek során a planéta sugara mintegy 7 km-el csökkent (mely zsugorodás a tudomány mai állása szerint még mindig tart).

Forrás: AGU

Naprendszerünk más léptékben

Szerző: Szklenár Tamás

Mindennapi életünkben könnyedén fel tudunk dolgozni olyan távolságokat, amelyek számunkra megszokott léptéket képviselnek, így nem esik nehezünkre tervezni olyan távolságokkal, amelyek lakóhelyünkön belül vagy hazai városok között jellemzőek. Külföldi utazások, hosszabb utak alkalmával tudatosul igazán bennünk bolygónk valós mérete. A Föld önmagában hatalmas és a modern közlekedési eszközök nélkül, gyalogosan bejárni élethosszig tartó küldetés lenne. Viszont amint kilépünk a bolygóközi, sőt csillagközi térbe, a mindennapi távolságok eltörpülnek a Világegyetem méretei mellett.

Ahhoz, hogy ezeket a léptékeket megfelelően ábrázolhassuk, arányosan átméretezett modellekre van szükségünk. Így nem csak az égitestek egymáshoz viszonyított méretét, hanem azok távolságát is érzékeltetni tudjuk. Ebben a cikkben olyan méretskálát alkalmazunk, amelyet könnyedén elkészíthet mindenki, felhasználható bárki számára, aki érdeklődik a téma iránt, de az oktatásban, szakkörök számára is hasznos lehet. Számításaink az égitestek jelenleg ismert átlagos sugarán és Naptól vett távolságán alapulnak.

Kezdjük egy egyszerűbb esettel és próbáljuk meg modellezni a Föld és Hold rendszerét. Földünk átlagsugara – kerekítve – 6373 km, így átmérője 12 746 km, a Hold esetében utóbbi 3475 km (3,7-szeres méretkülönbség). A két égitest átlagos távolsága 384 399 km. Ez még egy viszonylag könnyebben elképzelhető távolság annak, aki sokat vezet élete során. Olyan modellt kell készítenünk, amely befér egy nagyobb szobába, esetleg osztályterembe. Legyen a két égitestünk arányosan megváltoztatott távolsága 5 méter! Ebben az esetben Földünk modellje 16,6 cm átmérőjű, míg a Hold átmérője 4.5 cm. Előbbi számára használhatunk egy 2-es méretű futball- vagy kézilabdát, utóbbi részére egy pingponglabda is megfelelő.

Érdekességképpen vegyük hozzá Napunkat is ehhez a modellhez! Központi csillagunk átmérője ebben az esetben egy nagyobbacska busz hossza, kerekítve 18 m, amelyet a már elkészített Föld-Hold modelltől 2 km-re kellene elhelyeznünk.

Ebből rögtön látszik, hogy amint kilépünk a Föld-Hold rendszerből, a méretek modellezése igen problémássá válik. Kis számolással és egy nagyobb léptékű kicsinyítéssel azonban megoldható a dolog. A Nap átmérője kerekítve 110-szerese bolygónkénak. Ez lesz a kiindulópontunk. A modellünket pedig helyezzük el egy focipályán, amelyből bárki könnyűszerrel talál egyet az országban. A futballpályák hivatalos mérete igen tág skálán mozog, a csatolt képen látható pálya hossza 109 méter (a cikk írója szülővárosának, a szarvasi sportpályának méretét használta).

A Naprendszer „focipálya modell”

Új modellünkben a Nap átmérője 110 mm, míg Földünké 1 mm. A valóságban a két égitest távolsága 150 millió km, amelyet 1 Csillagászati Egységnek is nevezünk. Helyezzük napmodellünket, a 11 cm átmérőjű gömböt (labdát) a gólvonalra, ettől kezdve ő lesz a kapusunk! Ettől 11,86 m-re lesz Földünk, így szinte kijelöli a büntető pontját is. A további távolságokat és méreteket táblázatos formában láthatják olvasóink.

Naprendszerünk négy kőzetbolygója, a Merkúr, Vénusz, Föld és a Mars helyezkedik el legközelebb központi csillagunkhoz. Modellünkben a Mars már éppen nem fér a tizenhatoson belülre.

A Mars és a Jupiter között elhelyezkedő aszteroidaöv még bőven ebben a térfélben található.

A Jupiter, Naprendszerünk legnagyobb bolygója már a másik térfélre kerül, a Szaturnusz pedig már éppen lecsúszik a pályáról.

Amennyiben szeretnék az Uránuszt és a Neptunuszt is ábrázolni, úgy még több egymás mögé festett pályára van szükségünk. Az Uránusz 228 m-re lenne a kapustól (Nap), míg a Neptunusz távolsága ebben a méretskálában 357 m-nek adódna. A hányattatott sorsú Plútó közel fél km-re kerülne kapusunktól.

Nem teljesen tisztázott, hogy Naprendszerünk határa hol húzódik, nem tudjuk pontosan, hogy mikor lépünk át a csillagközi térbe. A Naprendszer jelenleg elfogadott sugara körülbelül 100 000 Csillagászati Egység, ez mintegy 1,5 fényév. Focipálya modellünkben ez a határ 1186 km-re lenne, egészen Amszterdam városáig kellene utaznunk.

Miután már képzeletben kiléptünk a csillagközi térbe, látogassuk meg legközelebbi csillagszomszédunkat! A Naphoz legközelebb elhelyezkedő csillag a Proxima Centauri, amelynek távolsága 4,2 fényév. Jelenlegi technológiai eszközeinkkel ez emberi időskálán elérhetetlen távolság, de kis modellünkben elég, ha Izlandig utazunk, Reykjavík városáig.

Égitest Modell mérete Modell távolsága
Nap 110 mm
Merkúr 0,4 mm 3,65 m
Vénusz 0,95 mm 8,6 m
Föld 1 mm 11,86 m
Mars 0,5 mm 18 m
Jupiter 11,2 mm 61,7 m
Szaturnusz 9,5 mm 113,6 m
Uránusz 4 mm 228 m
Neptunusz 3,9 mm 357 m
Plútó 0,19 mm 474 m
Naprendszer határa 1186 km
Proxima Centauri 17 mm 3183 km

Valószínűleg már kellőképpen zsong fejünk a sok-sok számadattól és Naprendszerünk, illetve az Univerzum méreteitől, azonban egy utolsó adattal még szolgálnunk kell. Naprendszerünk a Tejútrendszer nevű galaxis, egy hatalmas és lenyűgöző csillagváros részét képezi, amelyben jelenleg körülbelül 200-400 milliárd csillag található. Galaxisunk modellbeli átmérője éppen akkora lenne, mint Földünk és a Nap valós távolsága, 1 Csillagászati Egység, vagyis 150 millió kilométer. Ebben a hatalmas méretskálában pedig ott a mi focipálya modellünk, amely talán egy kicsit segíthet a körülöttünk lévő világ méreteinek megértésében.

Vulcan, a sosemvolt bolygó

Szerző: Kovács Gergő

1840-et írunk. A francia matematikus, Urbain Jean Joseph Le Verrier a Merkúr pályáját tanulmányozta. Munkáiban a planéta mozgását a newtoni fizika eszközeivel akarta előrejelezni, azonban a bolygó előre kiszámított pályája és az égitest tényleges mozgása között – a legpontosabb számítások ellenére – folyamatosan maradtak különbségek. Le Verrier 14 darab, 1697 és 1848 közötti Merkúr-átvonulást vizsgálva arra a következtetésre jutott, hogy a bolygó napközelpontja (más néven perihéliumpontja) egy év alatt 0,43 ívmásodpercet mozdul el az égen. Ezt az eltérést a matematikus egy eddig felfedezetlen, a Nap és a Merkúr közt keringő bolygónak tulajdonította. Az égitestet Vulcannak/Vulcanusnak nevezte el, a tűzhányók, kovácsolás és sivatagok római istene után.

Urbain Jean Joseph Le Verrier (1811-1877)

Le Verrier tézisét az is alátámasztotta, hogy a pályaháborgásokat figyelembe véve már sikerült felfedeznie egy bolygót, a Neptunuszt, 1846-ban. Az égitestre az Uránusz pályájában keletkező zavarok vizsgálata során bukkant rá, a Neptunusz pedig ott volt, az égbolt azon szegletében, ahol azt Le Verrier előre kiszámította. A sors iróniája, hogy az angol John Couch Adams számításai is helyesek voltak a Neptunusz térbeli helyzetét illetően, azonban Sir George Airy, angol királyi csillagász és a Cambridge-i obszervatórium vezetője, James Challis “mulasztásai” által a Neptunusz felfedezése Le Verrier és a berlini csillagda igazgatója, Johann Gottfried Galle érdeme lett.

Le Verrier riadóztatta a csillagász “társadalmat”, melynek köszönhetően a Vulcan a nemzetközi bolygóvadászat fő célpontja lett. Egyesek, például Edmond Modeste Lescarbault, saját készítésű teleszkópjával látni vélte a bolygót, mint a Nap korongja előtt gyorsan elhaladó apró pontot. A szkeptikus hangok és a bizonytalan megfigyelések ellenére Le Verrier elmélete masszívan tartotta magát, még az 1877-ben bekövetkező halála után is. Sőt, egy 1878-ban bekövetkezett napfogyatkozás kiváló alkalmat kínált (volna) a Vulcan megfigyelésére. Neves csillagászok vélték látni a bolygót, a nagy hírverés után, miszerint felfedezték a bolygót, kiderült, hogy csillagok voltak csupán…

A Vulcan-t még mindig nem látta senki, továbbá a Merkúr különös, gravitációs módon zavart (ún. perturbált) mozgásának oka továbbra is ismeretlen maradt. Ennek ellenére rengeteg tudós, köztük hazai csillagászok is, felfokozott érdeklődést tanúsítottak a bolygó iránt:


Kassai Raisz Miksa: A vulkán bolygó

Több év óta a naprendszerhez tartozó bolygók abszolút mozgása mathematikai törvényeinek kiszámításával foglalkozván, számításaimnak egyik eredménye azon következtetésre vezetett, hogy a Nap és Merkur közt még egy bolygónak – a több csillagásztól is feltételezett – Vulkán bolygónak kell léteznie. Erre nézve számításom eredménye a következő:

A VULKÁN bolygó átmérője (tengelye) = 724.9752 km.; útja pályájában egy nap alatt 5,502,355 km.; egy óra alatt 229,264 km.; tropikus mozgása egy nap alatt 98,059.16 km.; a Naptól való távolsága 11,436,932 km. Évi periodikus mozgását 13.21651 nap alatt végzi.

Természettudományi Közlöny XCIII. kötet, 202-ik füzet

1886 június


A Vulcan keresése még több évtizedig folytatódott, de tényleges felfedezés soha nem született, hisz’ soha nem is létezett ez a planéta. Majd 1915-ben bombaként robbant a tudományos világba Einstein relativitáselmélete, mely tökéletesen megmagyarázott mindent, így a Vulcan nemlétét is: az einsteini fizika szerint a Nap óriási tömege miatt képes “meggörbíteni a teret és időt”, a Merkúr pedig olyan közel kering központi csillagunkhoz, hogy már ebben az eltorzult téridőben kering. Az einsteini fizika így magyarázatot adott a Merkúr különös mozgására, többek között a bolygó perihéliumvándorlására is. Ezt a jelenséget, vagyis az égitest napközelpontjának folyamatos mozgását a klasszikus, newtoni fizika csupán egy másik égitest zavaró hatásával tudta megmagyarázni.

A Merkúr perihéliumvándorlása

Ahogy Isaac Asimov mondta, a Vulcan örökre le lett radírozva az égboltról. A csillagászok nyilvántartásaiból ki-, a térképekről lekerült. A korábban történt bolygóészlelések pedig minden bizonnyal napfoltok vagy csillagok voltak. A Vulcan története pedig arra tanította az embert, hogy a természet törvényei bonyolultabbak, mint hinné.

Szerk.: felelős szerkesztőnk 20201 január 18-án hétfőn 18:00 órakor a Galileo Webcast tudományos tartalomszolgáltató csatornán, a Gothard Jenő Csillagászati Egyesület (GAE) XLI. Megyei Csillagászati és Űrkutatási Hetek programsorozatán is előadta a sosemvolt bolygó történetét:




Források: [1] [2] [3] [4]

A Merkúr átvonulása a Nap előtt

Szerző: Rezsabek Nándor

A Merkúr-átvonulás főbb adatai és időpontjai (A helyi időhöz az UT-ben megadott időpontokhoz egy órát hozzá kell adni) Forrás: EclipseWise.com

November 11-én az idei esztendő legfontosabb csillagászati eseményére vagyunk „hivatalosak”: a Merkúr bolygó átvonul csillagunk, a Nap előtt. Reméljük, Olvasóink kedvező időjárási körülmények között, derült időben lehetnek részesei a természeti jelenségnek. A megfigyelés kapcsán fontos megjegyezni, hogy az kizárólag biztonságos napszűrővel ellátott csillagászati távcsőbe pillantva lehetséges. Erre az ország számos pontján, csillagvizsgálókban, továbbá csillagászati szervezetek által tartott távcsöves bemutatókon lesz lehetőség. A megfigyelők a Nap korongja előtt elvonuló foltként láthatják a belső bolygó fekete sziluettjét.

A Merkúr átvonulása a Nap előtt, 2016. május 9-én (Fotó: Elijah Mathews) 

Csillagászattörténeti kutatások szerint minden idők egyik legnagyobb hatású asztronómusa, a heliocentrikus világkép megalkotója, Kopernikusz sohasem látta a Merkúr bolygót. Nemhogy távcsővel – hiszen azt csak évtizedekkel később alkották meg, majd használták csillagászati célokra –, de szabad szemmel sem. A dolog magyarázata, hogy a Merkúr kizárólag napnyugta után és napkelte előtt látható, de központi égitestünkhöz valóközelsége miatt igencsak rövid ideig. Fényessége pedig jóval elmarad a népnyelvben Esthajnalcsillagnak nevezett, a Szentírásban egyedüliként konkrétan említett bolygótól, a Vénusztól. Így megtalálása nem is olyan könnyű feladat, megpillantása minden esetben kizárólag a horizonthoz közel lehetséges.

A Merkúr és a Vénusz legnagyobb kitérései (Kép: history.nasa.gov)

Szabad szemmel fényes csillagnak tűnik; csillagászati távcsővel vizsgálva kisméretű korongja a Holdhoz, valamint a Vénuszhoz és a Marshoz hasonlóan fázisokat mutat. Naprendszerünk központi csillagához legközelebb rója köreit, emiatt napsütötte oldalán közel félezer fokos pokol uralkodik, árnyékos felén pedig majdnem mínusz kétszáz fok a hőmérséklet. Tengely körüli forgása igen lassú, három fordulata alatt kétszer is megkerüli a Napot. Így ottani időszámítás szerint egy Merkúr-esztendő mindösszesen másfél Merkúr-napig tart. Ha léteznének értelmes élőlények a felszínén – valójában primitív organizmusok sincsenek arrafelé –, másfél naponta ünnepelnék születésnapjukat. A bolygó külső megjelenésében megtévesztésig hasonlatos a Föld Holdjához. Ugyanúgy kozmikus sebhelyek borítják felszínét, melyeket a Naprendszer életének korai szakaszában bekövetkezett intenzív kisbolygó- és meteoritbecsapódások okoztak. Ezek közül a Caloris-medencét kialakító olyan pusztító volt, hogy az 1300 km átmérőjű óriáskráter mellett a szilárd bolygófelszínen végigfutó hullámok az égitest átellenes pontjában találkozva kaotikus felszíni formákat hoztak létre.

A Merkúr a MESSENGER űrszonda felvételén

S’ bármily furcsán hangzik, a Merkúrnak van magyar vonatkozása! Felszínén ugyanis Bartókról, Jókairól, Lisztről, valamint (utolsóként 2013-ban, a MESSENGER űrszonda felvételeire alapozva, a keresztelésre hivatott Nemzetközi Csillagászati Unió jóvoltából) Petőfiről neveztek el egy-egy krátert.