Ismerős idegenek – avagy Naprendszerünk a Science Fiction univerzumában – I. rész

Szerző: Ivanics-Rieger Klaudia

Bevezető

Számtalan lehetőségünk van arra, hogy megismerjük a Naprendszerünket. Elég csak kinyitnunk egy tudományos könyvet, átkapcsolni a tévét egy ismeretterjesztő csatornára vagy követni egy ismeretterjesztő oldalt az interneten, esetleg ilyen ismertető videókat nézni. A következő cikksorozatban azonban a Naprendszert egy új oldaláról ismerhetjük meg. A sorozat a tudományos fikció világába kalauzol el minket. Égitestről égitestre haladva ismerhetjük meg, hogy az adott objektum miként jelenik meg a sci-fikben, a könyvek lapjain csak úgy, mint a mozivásznon. Elsősorban azokra a művekre koncentráltam, amik a hazai science-fiction rajongók körében jól ismertek. Akik már látták, olvasták őket, azok számára nyilván ismerős a terep, akik még nem, azoknak remélem, sikerül kedvet csinálni. Utazásunk során belülről kifelé haladunk, a belső bolygókkal kezdjük és a Naprendszer határán fejezzük be, s közben felfedezzük ismerős égitesteink idegen oldalát.

A Naprendszerről szóló korai szakirodalom a 17. századig visszanyúló tudományos spekulációk nyomán azt feltételezte, hogy minden bolygó saját őshonos életformának ad otthont, emellett gyakran feltételezik, hogy lakói antropomorfok. Ezeket az elképzeléseket ma bolygóromantikának hívjuk. A tudomány fejlődésével aztán a sci-fik is igyekeztek lépést tartani. Míg először csak a holdutazás foglalkoztatta őket, a 20. századtól megjelent a Mars kolonizálása és/vagy terraformálása, s az élet lehetőségeit is áthelyezték a gázóriások egyes holdjaira (mint például az Europa és az Enceladus).

Merkúr

A science-fiction irodalomban szokás megkülönböztetni a régi és az új Merkúrról írók csoportját. A régi Merkúr leírások 1965 előtt születtek, a közös az volt bennük, hogy a bolygó kötött keringésű (mint a Hold) és van sötét, illetve világos oldala. A régi Merkúr egy kietlen világ, ahol az élet és a halál a sötétség és világosság határán, a lassan mozgó terminátor vonal körül forog. Miután ez az elmélet megdőlt, születtek az új Merkúrról szóló írások, melyek már tükrözik a hivatalos tudományos felfedezéseket.

Isaac Asimov Körbe-körbe című novellája 2015-ben játszódik. Két űrhajós egy Sebi nevű robottal felmérnek egy régi bázist a bolygón. A robotot szeléniumért küldik, csakhogy az nem tér vissza. Végül kénytelenek utána menni, kockáztatva, hogy a hővédő ruhájuk feladja, ők pedig megsülnek. Sebit meglátva rájönnek, hogy az a robotika II. és III. törvénye miatt lett üzemzavaros és inkább fogócskázni akar. Ennek megértéséhez idézzük fel a robotika három törvényét:

„1. A robotnak nem szabad kárt okoznia emberi lényben, vagy tétlenül tűrnie, hogy emberi lény bármilyen kárt szenvedjen.

2. A robot engedelmeskedni tartozik az emberi lények utasításainak, kivéve, ha ezek az utasítások az első törvény előírásaiba ütköznének.

3. A robot tartozik saját védelméről gondoskodni, amennyiben ez nem ütközik az első vagy második törvény bármelyikének előírásaiba.”

A szeléngyűjtés pedig elég veszélyes volt ahhoz, hogy a III. és II. törvény ütközzön egymással. Végül az első törvény segítségével igyekeznek megoldani a helyzetet: az egyik űrhajós kockáztatja az életét és majdnem megsül, mire Sebi visszaviszi a sötét oldalon lévő bázisra.

Az Űrvadász-sorozat Lucky Starr és a Merkúr óriás napja című kisregényében főhősünk, David „Lucky” Starr és társa, Colos a merkúri bányák ügyében nyomoznak, melyek már kimerülőben vannak és állítólag kísértetek is lakják a bolygót, amik állandóan baleseteket okoznak. Végül kiderül, hogy szellemek ugyan nem léteznek, de a bányákban élnek helyi létformák.

Arthur C. Clarke már a régi Merkúrról is írt, a Szigetek az égben című regényében ködösen utalnak egy idegen létformára, mely megosztja az emberiséggel a Naprendszert. Ezek a létformák nem intelligensek, és az egyik szereplő szerint a Merkúr sötét felén élnek.

Viszont a Randevú a Rámával című regényfolyamban a Merkúron már zajlik az élet: a bolygót fémbányászok forrófejű kormánya uralja, akik azzal fenyegetőznek, hogy elpusztítják a Rámát (ami ugyebár egy idegenek által épített szerkezet). Kim Stanley Robinson 2312 című hard sci-fi-je az egész Naprendszeren átível. A Merkúr ebben egy vezető erőt képez, az egyéb apróbb élőhelyeket a Mondragon-egyezmény fogja laza szövetségbe, melynek a bolygó a központja és a főszereplő is onnan származik.

Vénusz

Sokáig áthatolhatatlan felhőtakarója szabad utat adott a science-ficton íróknak, hogy élettel töltsék meg ezen ismeretlen világot. Főként az után, hogy kiderült, a Földhöz hasonló méretű bolygó jelentős atmoszférával rendelkezik. Mivel közelebb van a Naphoz, lakható, meleg, szinte trópusi éghajlatú (és növényzetű) világként ábrázolták, melyen – nevéből kiindulva – harcos amazonok élnek. A korai írókat alapvetően három csoportra bonthatjuk: egyesek óceánt vizionáltak a Vénuszra (hazánkban általában ezen könyvek jelentek meg). Mások mocsarat képzeltek a felszínre, esetleg szakadatlan esővel kiegészülve. A harmadik csoport ezektől eltérően inkább sivatagot favorizálja. Az ilyen jellegű művek főként 1930-50 közt voltak jellemzők. Azonban az első missziók eredményei szöges ellentétben álltak az addigi elképzelésekkel. A szerzők – ahogy a Merkúr esetében – itt is igyekeztek lépést tartani a tudományos eredményekkel és inkább a terraformálás lehetőségeire fókuszáltak.

Olaf Stapledon Az utolsó és az első emberek című regényében az emberiség a jövőben kénytelen átköltözni a Vénuszra, mivel a Hold bele fog csapódni a Földbe. A Vénuszt a szerző egy óceánoktól uralt bolygónak írja le, ahol heves trópusi viharok vannak.

C. S. Lewis Pelerandra című művében Pelerandrának hívják a Vénusz bolygót az ott élő helyiek. A bolygó a természet csodája: a rajta lakó élőlények szelídek, barátságosak, nem ismerik a félelmet. A tengerben úszó szigetek találhatók. Tulajdonképpen magáról az Édenkertről van szó, ahol még nem történt meg a bűnbeesés. Maga a regény egy kozmikus trilógia második része (Az első A csendes bolygó).

Arthur C. Clarke 3001 Űrodüsszeia című folytatásregényében a Vénuszt éppen terraformálják, amihez üstökösmagokra vadásznak, hogy azokat a Vénuszra szállítva alakítsák át a bolygó felszínét.

Térjünk vissza ismét Isaac Asimov főhősére, Lucky Starr-ra, aki a Vénuszra is eljutott nyomozása során a Lucky Starr és a Vénusz óceánjai című kisregényben. Ebben a bolygó egyik vízalatti kolóniáját fenyegeti pusztulás, annak ellenére, hogy a gazdasága gyorsan fejlődik. Egy, csak a Vénuszon élő újfajta élesztőgomba nemesítésével tudósok már közel járnak egy olyan élelmiszeripari alapanyag előállításához, mellyel örökre véget lehetne vetni a földi élelmiszerhiánynak és fontos exportcikket biztosítana a vénuszi gazdaságnak. A baktériumok körül azonban egyre gyanúsabb balesetek és „véletlenek” történnek. A krízis szálai a bolygó misztikus óceánjainak mélyére vezetik Lucky Starrt és hű segítőtársát, Colost. A több évtizednyi kolonizáció ellenére a Vénusz még mindig egy idegen bolygó, ismeretlen élőlényekkel és végtelen tengerekkel. Az író alaposan kidolgozott, a legapróbb részletekig átgondolt vénuszi ökológiát tár elénk, ami szerves részét képezi a cselekménynek.

Az új Vénuszról szóló művek már a 60-as évek után születtek. Frederik Pohl és C. M. Kornbluth A Vénusz-üzlet című regényében konkrétan áruba bocsátják az egész bolygót. Szőröstül-bőröstül. A tervet Amerika legnagyobb reklámügynökségének igazgatója eszeli ki. Meg is bíznak ezzel egy reeklámfőnököt, akinek feladata az egyelőre lakhatatlan bolygó céges tulajdonba vétele, reklámozása, eladása, egyszóval minden, amit cége jónak tart.

Kim Stanley Robinson 2312 című regényében a Vénuszt a kínaiak terraformálták. Ehhez egy óriási napernyőt használtak a Nap melegének elzárására, amely annyira lehűti a légkört, hogy a benne lévő szén-dioxid lefagyjon. A mesterséges kőzet a fagyott CO2 fölé kerül, hogy megakadályozza annak elszublimálását.

Egy másik, Naprendszeren (és azon túl) átívelő regényfolyam a Térség (The Expanse) James S. A. Corey sci-fije. A Vénusz itt fontos szerepet kap. Az Eros kisbolygó, melyet eluralt a Naprendszeren kívülről származó anyag, a protomolekula, ide csapódik be, s innen kiindulva kezdi felépíteni a Gyűrű nevű struktúrát, mely majd idegen világokba nyit utat…

Rekordgyorsan keringő kisbolygót fedeztek fel

Szerző: Kovács Gergő

Tíz napja, a chilei 570 megapixeles Dark Energy Camera (DECam – Sötét Energia Kamera) segítségével csillagászok tíz nappal ezelőtt felfedezték az eddig ismert legkisebb keringési idejű aszteroidát, számol be a Space.com. A hozzávetőlegesen 1 kilométer átmérőjű égitest mindössze 20 millió kilométerre (0,13 Cs.E-re) kering a Nap körül, 113 nap alatt megkerülve csillagunkat.

Fantáziarajz a 2021 PH27 jelű kisbolygóról (jobbra fent).
Kép forrása: CTIO/NOIRLab/NSF/AURA/J. da Silva (Spaceengine)

A 2021 PH27 nevű kisbolygó keringési idejénél csupán a merkúri év rövidebb, a legbelső bolygónk ugyanis mindössze 88 nap alatt tesz egy kört központi csillagunk körül. Az újonnan felfedezett kisbolygó azonban a Merkúrnál elnyúltabb pályával rendelkezik, így Napunkat akár 20 millió kilométerre is megközelítheti, szemben a Merkúr 47 millió kilométeres perihélium-távolságával.

Vulcan, a sosemvolt bolygó – újratöltve

Bolygótudományi portálunk, a Planetology.hu szakmai közreműködésével január 18-án hétfőn 18:00 órakor a Galileo Webcast tudományos tartalomszolgáltató csatornán folytatódott a virtuális térben a Gothard Jenő Csillagászati Egyesület (GAE) XLI. Megyei Csillagászati és Űrkutatási Hetek programsorozata. Felelős szerkesztőnk, Kovács Gergő geográfus, tudományos újságíró (Planetology.hu felelős szerkesztő, Parallaxis online szerkesztő és blogszerző), “Vulcan, a sosemvolt bolygó” címmel tartott előadást.




Felszínformák elnevezései bolygókon és holdakon

Sinus Iridum, Mare Imbrium, Hellas Planitia, Olympus Mons, Valles Marineris… megannyi idegen név, idegen égitesteken, de mit takarnak az egyes felszínalaktani formák elnevezései? Mi a Sinus? Mi a Valles? E cikkben felsoroljuk Naprendszerünk szilárd felszínű égitestjeinek legfőbb felszínformáit. Az alábbi felsorolás eredetijét a Nemzetközi Csillagászati Unió (IAU) egyik kiadványa (Transactions No. XVI-XVIIB) jelentette meg, melyet aztán a Föld és Ég c. folyóirat 1981 decemberi száma, később Hédervári Péter: Ismeretlen (?) Naprendszerünk c. 1986-os műve is átvett. E gyűjteményt továbbá kiegészítettük azon főbb felszínforma-típusokkal is, melyek a forrásban még nem szerepelnek, emellett aktualizáltuk is a felsorolást.

Az adott képződménytípust először egyes (majd többes) számú nevén olvashatjuk, mely után a magyar elnevezést (egyes esetekben az adott felszínformák nem rendelkeznek állandó magyar névvel, ezeket kérdőjellel láttuk el) és egy rövid felszínalaktani leírást is találunk.

Arcus (Arcus) – ív
– ívelt alakzat a Titanon

Astrum (Astra) – asztrum
– sugaras mintázatú terület a Vénuszon

Catena (Catenae) – kráterlánc
– kisebb, általában közel azonos méretű kráterek láncolatszerű sora

Az Enki Catena a Ganymedes felszínén
Fotó: NASA/JPL/Galileo. Forrás: Wikipedia

Cavus (Cavi) – üreg
– általában csoportosan előforduló, szabálytalan alakú, meredek falú mélyedések (katlanok)

Chaos (Chaosi) – káosz
– szabálytalan domborzatú, erősen lepusztult kiemelkedések zónája

Chasma (Chasmata) – kanyon
– hosszan kiterjedő, meredek falú, mély völgy

Collis (Colles) – domb
– kisméretű hegy vagy domb

Corona (Coronae) – korona
– kör vagy ellipszis formájú alakzat a Vénuszon, mely részben vagy teljesen koncentrikus formákból áll: általában egy perem és egy ezt körülvevő, árokszerű mélyedésből áll

Crater (Crateris) – kráter
– kifejezetten kör alakú, vulkáni vagy becsapódási eredetű mélyedés

A Herschel-kráter a Szaturnusz Mimas nevű holdján
Fotó: NASA/Cassini. Forrás: Wikipedia

Dorsum (Dorsi) – gerinc
– hosszan elnyúló, szabálytalan alakú, egyenes vagy görbült vonalú kiemelkedés

Facula (Faculae) – fáklya?
– világos folt

Farrum (Farra) – farrum?
– palacsintaszerű vulkanikus képződmények a Vénuszon

A Carmenta Farra palacsinta-szerű formái a Vénuszon
Fotó: NASA/JPL/Magellan. Forrás: Wikipedia

Flexus (Flexus) – hát
– nagyon alacsony, enyhén ívelt, hullámos mintázatú gerinc (a latin szó hajlatot jelent)

Fluctus (Fluctus) – lávafolyás?
– több száz kilométer hosszú lávafolyások, melyeknél a láva a forrástól tartósan egy irányba folyt

Flumen (Flumina) – csatorna?
– csatorna a Titan-on, mely folyadékot szállíthat

Fossa (Fossae) – árok
– hosszú, keskeny, sekély mélyedés(ek), lehetnek egyenesek vagy görbültek

Insula (Insulae) – sziget
– sziget vagy szigetcsoport, melyet folyékony anyagú terület (tenger vagy tó) vesz körül részben vagy teljesen

Labes (Labes) – csuszamlás?
– nyelv-formájú (föld)csuszamlás

Labyrinthus (Labyrinthi) – labirintus
– egymást keresztező, keskeny mélyedések, völgyek rendszere (pl. kereszttöréses rendszer)

A Labyrinthus Noctis, a Mars legnagyobb labirintusa
Fotó: NASA/Viking 1. Forrás: Wikipedia

Lacuna (Lacunae) – tómeder?
– szabálytalan formájú mélyedések a Titanon, melyek megjelenésüket tekintve kiszáradt tómedrek lehetnek

Lacus (Lacus) –
– kisebb méretű, szabálytalan körvonalú, sötét felszínű sík terület a Holdon, Merkúron, Marson (valamint pl. a Titanon – a szerk.)

Lenticula (Lenticulae) – lencse?
– kis méretű, sötét foltok az Europa felszínén

Linea (Lineae) – vonal
– sötét vagy fényes, keskeny, hosszan elnyúló képződmény, amely mind egyenes, mind görbült vonalú lehet

Macula (Maculae) – folt
– sötét, esetleg szabálytalan alakú képződmény

A Mordor Macula, a Charon sötét foltjának nem hivatalos elnevezése
Fotó: NASA/New Horizons. Forrás: Wikipedia

Mare (Maria) – tenger
– kerekded körvonalú, nagy kiterjedésű, sötét felszínű, sík terület (megjegyzés: néha azonban elnyúlt alakú, pl. a Mare Frigoris – H.P.)

Mensa (Mensae) – táblahegy
– lapos, sík tetejű és meredek, éles peremmel, körülhatárolt kiemelkedés (a latin szó “asztal”-t jelent)

Mons (Montis) – hegy
– a környezetéből határozott talapzattal kiemelkedő, viszonylag kis területű, minden oldalán lejtővel határolt, zárt térszíni kiemelkedés. Hegység: viszonylag nagyt területű, zárt, de völgyekkel és medencékkel jól tagolt, környezete fölé magasodó földrajzi egység. (Megjegyzés: az eredeti szövegben a meghatározások hiányoztak: az itt közölteket a Természettudományi Lexikon-ból vettük át – H.P.)

A marsi Olympus Mons, Naprendszerünk legmagasabb vulkánja
Fotó: NASA/Viking. Forrás: Wikipedia

Oceanus (Oceani) – óceán
– a Hold óriási kiterjedésű, sötét felszínű sík területe (csak az Oceanus Procellarum, azaz a Viharok Óceánja viseli ezt az elnevezést)

Palus (Paludius) – mocsár
– a Hold kisebb kiterjedésű, szabálytalan körvonalú, sötét mare- és fényesebb “szárazföldi” anyagot egyaránt tartalmazó területe(i)

Patera (Paterae) – sekély kráter
– szabálytalan vagy összetett szerkezetű, hullámos falú-peremű, sekély kráter (a latin szó eredetileg áldozati lapos “csészé”-t jelent)

Planitia (Planitiae) – alföld, medence
– sima felszínű, alacsonyan fekvő terület (medence, mélyföld)

Planum (Plani) – fennsík
– magasan fekvő, sima felületű terület, plató

Plume (Plumes) – jégvulkán?
– a vulkánok azon típusa a főként jégből álló törpebolygókon és holdakon, melyek olvadt kőzet helyett vizet, ammóniát vagy metánt lövellnek ki

Promontorium (Promontorii) – előhegység, hegyfok
– világosabb anyagú kiemelkedés a Holdon, amelyet sötétebb anyagú mare-területek vesznek körül (“félsziget“)

Regio (Regiones) – terület
– olyan nagyméretű vidék, amelyet fényvisszaverő képességének vagy színének elütő volta egyértelműen elhatárol a környezetétől

Reticulum (Reticula) – háló?
– háló(zat)szerű mintázatok a Vénuszon

Rima (Rimae) – hasadék
– keskeny, hosszú bemélyedés, repedés vagy lávacsatorna

Rupes (Rupis) – szakadék
– egyenes vonalú, meredek falú, lépcsőszerű leszakadás

A 20 kilométer magas Verona Rupes, a Naprendszer legnagyobb
ismert sziklafala az Uránusz Miranda nevű holdján
Fotó. NASA/JPL/Voyager 2. Forrás: Wikipedia

Saxum (Saxa) – szikla
– nagyobb méretű, határozottan elkülönülő sziklák az aszteroidákon

A (101955) Bennu aszteroida, felszínén több, jól elkülönülő sziklával (saxummal)
Fotó: NASA/OSIRIS-REx. Forrás: Wikipedia

Scopulus (Scopuli) – partfal
– olyan meredek falú leszakadás, amelynek peremvonala nagyon kanyargós vagy félszigetszerű

Serpens (Serpentes) – hullám
– elnyúlt, hosszában hol bemélyedő, hol kidomborodó, szinuszgörbe-szerűen hullámzó képződmény

Sinus (Sinus) – öböl
– a Hold mare-területeihez kapcsolódó, kisebb, sötét felszínű terület, amely beékelődik a mare-t határoló fényesebb, “szárazföldi” vidékbe (Megjegyzés: az öblök olyan kráterek, amelyeknek a medence felőli sáncfala hiányzik, valószínűleg azért, mert a medencéket elöntő bazaltos láva beolvasztotta és megsemmisítette azt – H.P.)

A Sinus Iridum a Hold felszínén. Kétoldalt egy-egy, félszigetként
beékelődő Promontorium, valamint a Mare Imbrium
Fotó: NASA/LRO. Forrás: Wikipedia

Solitudo (Solitudinis) – solitudo
– a Merkúr klasszikus, sötét árnyalatú (kis albedójú) képződményei, a szó eredeti jelentése: “hiány“, “magány” (ezt az elnevezést már nem használjuk – a szerk.)

Sulcus (Sulci) – barázda
– hosszan elnyúló, csaknem párhuzamos barázdák, kiemelkedések és mélyedések rendszere

Terra (Terrae) – föld, szárazföld
– hullámzó vagy durva felszínű, magasan elhelyezkedő, igen nagy kiterjedésű terület, hegyvidék (földi értelemben: szárazföld, kontinens)

Tessera (Tesserae) – mozaik
– csempeszerű, poligonális mintázatú felszín a Vénuszon

Tholus (Tholi) – domb
– különálló, kúp alakú domb vagy kisebb hegy (a latin eredeti kupolát jelent)

Unda (Undae) – dűne
– általában elnyúlt formájú domb, melynek anyaga elsősorban homok, ritkábban kavics vagy jég

Vallis (Valles) – völgy
– kanyargó, hosszan elnyúló mélyedés, esetleg elágazásokkal

A Valles Marineris, a Mars és a Naprendszer legnagyobb kanyonrendszere
Fotó: NASA/JPL/Viking 1. Forrás: Wikipedia

Vastitas (Vastitatis) – síkság
– a bolygó igen nagy részére kiterjedő lapos, sík vidék



Források:

Hédervári Péter: Ismeretlen (?) Naprendszerünk, 1986

Hargitai Henrik, Kozma Judit, Kereszturi Ákos, Bérczi Szaniszló, Dutkó András, Illés Erzsébet, Karátson Dávid, Sik András: Javaslat a planetológiai nevezéktan magyar rendszerére

Gazetteer of Planetary Nomenclature

Encyclopaedia of Planetary Landforms, 2014

Bolygós rövidhírek: zsugorodó Merkúr

Szerző: Rezsabek Nándor

Fotó: NAPA/JPL/MESSENGER

A Journal of Geophysical Research: Planets című szaklapban amerikai és kanadai kutatók a Merkúron található ún. sima síkságok (smooth plains) törésrendszereinek eredetével és geomorfológiájával foglalkoztak. A sima síkságok az aktív vulkanizmus során újraképződött felszín jellegzetességei. A megfigyelt törésvonalak 15-20 km mélységig húzódnak a kéregben. A kutatások megállapították, hogy a többezernyi tektonikus vető kialakulását a Merkúr magjának és köpenyének lassú lehűlése során bekövetkező kéreg-összehúzódás okozta. Ennek során a planéta sugara mintegy 7 km-el csökkent (mely zsugorodás a tudomány mai állása szerint még mindig tart).

Forrás: AGU

Naprendszerünk más léptékben

Szerző: Szklenár Tamás

Mindennapi életünkben könnyedén fel tudunk dolgozni olyan távolságokat, amelyek számunkra megszokott léptéket képviselnek, így nem esik nehezünkre tervezni olyan távolságokkal, amelyek lakóhelyünkön belül vagy hazai városok között jellemzőek. Külföldi utazások, hosszabb utak alkalmával tudatosul igazán bennünk bolygónk valós mérete. A Föld önmagában hatalmas és a modern közlekedési eszközök nélkül, gyalogosan bejárni élethosszig tartó küldetés lenne. Viszont amint kilépünk a bolygóközi, sőt csillagközi térbe, a mindennapi távolságok eltörpülnek a Világegyetem méretei mellett.

Ahhoz, hogy ezeket a léptékeket megfelelően ábrázolhassuk, arányosan átméretezett modellekre van szükségünk. Így nem csak az égitestek egymáshoz viszonyított méretét, hanem azok távolságát is érzékeltetni tudjuk. Ebben a cikkben olyan méretskálát alkalmazunk, amelyet könnyedén elkészíthet mindenki, felhasználható bárki számára, aki érdeklődik a téma iránt, de az oktatásban, szakkörök számára is hasznos lehet. Számításaink az égitestek jelenleg ismert átlagos sugarán és Naptól vett távolságán alapulnak.

Kezdjük egy egyszerűbb esettel és próbáljuk meg modellezni a Föld és Hold rendszerét. Földünk átlagsugara – kerekítve – 6373 km, így átmérője 12 746 km, a Hold esetében utóbbi 3475 km (3,7-szeres méretkülönbség). A két égitest átlagos távolsága 384 399 km. Ez még egy viszonylag könnyebben elképzelhető távolság annak, aki sokat vezet élete során. Olyan modellt kell készítenünk, amely befér egy nagyobb szobába, esetleg osztályterembe. Legyen a két égitestünk arányosan megváltoztatott távolsága 5 méter! Ebben az esetben Földünk modellje 16,6 cm átmérőjű, míg a Hold átmérője 4.5 cm. Előbbi számára használhatunk egy 2-es méretű futball- vagy kézilabdát, utóbbi részére egy pingponglabda is megfelelő.

Érdekességképpen vegyük hozzá Napunkat is ehhez a modellhez! Központi csillagunk átmérője ebben az esetben egy nagyobbacska busz hossza, kerekítve 18 m, amelyet a már elkészített Föld-Hold modelltől 2 km-re kellene elhelyeznünk.

Ebből rögtön látszik, hogy amint kilépünk a Föld-Hold rendszerből, a méretek modellezése igen problémássá válik. Kis számolással és egy nagyobb léptékű kicsinyítéssel azonban megoldható a dolog. A Nap átmérője kerekítve 110-szerese bolygónkénak. Ez lesz a kiindulópontunk. A modellünket pedig helyezzük el egy focipályán, amelyből bárki könnyűszerrel talál egyet az országban. A futballpályák hivatalos mérete igen tág skálán mozog, a csatolt képen látható pálya hossza 109 méter (a cikk írója szülővárosának, a szarvasi sportpályának méretét használta).

A Naprendszer „focipálya modell”

Új modellünkben a Nap átmérője 110 mm, míg Földünké 1 mm. A valóságban a két égitest távolsága 150 millió km, amelyet 1 Csillagászati Egységnek is nevezünk. Helyezzük napmodellünket, a 11 cm átmérőjű gömböt (labdát) a gólvonalra, ettől kezdve ő lesz a kapusunk! Ettől 11,86 m-re lesz Földünk, így szinte kijelöli a büntető pontját is. A további távolságokat és méreteket táblázatos formában láthatják olvasóink.

Naprendszerünk négy kőzetbolygója, a Merkúr, Vénusz, Föld és a Mars helyezkedik el legközelebb központi csillagunkhoz. Modellünkben a Mars már éppen nem fér a tizenhatoson belülre.

A Mars és a Jupiter között elhelyezkedő aszteroidaöv még bőven ebben a térfélben található.

A Jupiter, Naprendszerünk legnagyobb bolygója már a másik térfélre kerül, a Szaturnusz pedig már éppen lecsúszik a pályáról.

Amennyiben szeretnék az Uránuszt és a Neptunuszt is ábrázolni, úgy még több egymás mögé festett pályára van szükségünk. Az Uránusz 228 m-re lenne a kapustól (Nap), míg a Neptunusz távolsága ebben a méretskálában 357 m-nek adódna. A hányattatott sorsú Plútó közel fél km-re kerülne kapusunktól.

Nem teljesen tisztázott, hogy Naprendszerünk határa hol húzódik, nem tudjuk pontosan, hogy mikor lépünk át a csillagközi térbe. A Naprendszer jelenleg elfogadott sugara körülbelül 100 000 Csillagászati Egység, ez mintegy 1,5 fényév. Focipálya modellünkben ez a határ 1186 km-re lenne, egészen Amszterdam városáig kellene utaznunk.

Miután már képzeletben kiléptünk a csillagközi térbe, látogassuk meg legközelebbi csillagszomszédunkat! A Naphoz legközelebb elhelyezkedő csillag a Proxima Centauri, amelynek távolsága 4,2 fényév. Jelenlegi technológiai eszközeinkkel ez emberi időskálán elérhetetlen távolság, de kis modellünkben elég, ha Izlandig utazunk, Reykjavík városáig.

Égitest Modell mérete Modell távolsága
Nap 110 mm
Merkúr 0,4 mm 3,65 m
Vénusz 0,95 mm 8,6 m
Föld 1 mm 11,86 m
Mars 0,5 mm 18 m
Jupiter 11,2 mm 61,7 m
Szaturnusz 9,5 mm 113,6 m
Uránusz 4 mm 228 m
Neptunusz 3,9 mm 357 m
Plútó 0,19 mm 474 m
Naprendszer határa 1186 km
Proxima Centauri 17 mm 3183 km

Valószínűleg már kellőképpen zsong fejünk a sok-sok számadattól és Naprendszerünk, illetve az Univerzum méreteitől, azonban egy utolsó adattal még szolgálnunk kell. Naprendszerünk a Tejútrendszer nevű galaxis, egy hatalmas és lenyűgöző csillagváros részét képezi, amelyben jelenleg körülbelül 200-400 milliárd csillag található. Galaxisunk modellbeli átmérője éppen akkora lenne, mint Földünk és a Nap valós távolsága, 1 Csillagászati Egység, vagyis 150 millió kilométer. Ebben a hatalmas méretskálában pedig ott a mi focipálya modellünk, amely talán egy kicsit segíthet a körülöttünk lévő világ méreteinek megértésében.

Vulcan, a sosemvolt bolygó

Szerző: Kovács Gergő

1840-et írunk. A francia matematikus, Urbain Jean Joseph Le Verrier a Merkúr pályáját tanulmányozta. Munkáiban a planéta mozgását a newtoni fizika eszközeivel akarta előrejelezni, azonban a bolygó előre kiszámított pályája és az égitest tényleges mozgása között – a legpontosabb számítások ellenére – folyamatosan maradtak különbségek. Ezt az eltérést a matematikus egy eddig felfedezetlen, a Nap és a Merkúr közt keringő bolygónak tulajdonította. Az égitestet Vulcannak/Vulcanusnak nevezte el, a tűzhányók, kovácsolás és sivatagok római istene után.

Urbain Jean Joseph Le Verrier (1811-1877)

Le Verrier tézisét az is alátámasztotta, hogy a pályaháborgásokat figyelembe véve már sikerült felfedeznie egy bolygót, a Neptunuszt, 1846-ban. Az égitestre az Uránusz pályájában keletkező zavarok vizsgálata során bukkant rá, a Neptunusz pedig ott volt, az égbolt azon szegletében, ahol azt Le Verrier előre kiszámította. A sors iróniája, hogy az angol John Couch Adams számításai is helyesek voltak a Neptunusz térbeli helyzetét illetően, azonban Sir George Airy, angol királyi csillagász és a Cambridge-i obszervatórium vezetője, James Challis “mulasztásai” által a Neptunusz felfedezése Le Verrier és a berlini csillagda igazgatója, Johann Gottfried Galle érdeme lett.

Le Verrier riadóztatta a csillagász “társadalmat”, melynek köszönhetően a Vulcan a nemzetközi bolygóvadászat fő célpontja lett. Egyesek, például Edmond Modeste Lescarbault, saját készítésű teleszkópjával látni vélte a bolygót, mint a Nap korongja előtt gyorsan elhaladó apró pontot. A szkeptikus hangok és a bizonytalan megfigyelések ellenére Le Verrier elmélete masszívan tartotta magát, még az 1877-ben bekövetkező halála után is. Sőt, egy 1878-ban bekövetkezett napfogyatkozás kiváló alkalmat kínált (volna) a Vulcan megfigyelésére. Neves csillagászok vélték látni a bolygót, a nagy hírverés után, miszerint felfedezték a bolygót, kiderült, hogy csillagok voltak csupán…

A Vulcan-t még mindig nem látta senki, továbbá a Merkúr különös, gravitációs módon zavart (ún. perturbált) mozgásának oka továbbra is ismeretlen maradt. Ennek ellenére rengeteg tudós, köztük hazai csillagászok is, felfokozott érdeklődést tanúsítottak a bolygó iránt:


Kassai Raisz Miksa: A vulkán bolygó

Több év óta a naprendszerhez tartozó bolygók abszolút mozgása mathematikai törvényeinek kiszámításával foglalkozván, számításaimnak egyik eredménye azon következtetésre vezetett, hogy a Nap és Merkur közt még egy bolygónak – a több csillagásztól is feltételezett – Vulkán bolygónak kell léteznie. Erre nézve számításom eredménye a következő:

A VULKÁN bolygó átmérője (tengelye) = 724.9752 km.; útja pályájában egy nap alatt 5,502,355 km.; egy óra alatt 229,264 km.; tropikus mozgása egy nap alatt 98,059.16 km.; a Naptól való távolsága 11,436,932 km. Évi periodikus mozgását 13.21651 nap alatt végzi.

Természettudományi Közlöny XCIII. kötet, 202-ik füzet

1886 június


A Vulcan keresése még több évtizedig folytatódott, de tényleges felfedezés soha nem született, hisz’ soha nem is létezett ez a planéta. Majd 1915-ben bombaként robbant a tudományos világba Einstein relativitáselmélete, mely tökéletesen megmagyarázott mindent, így a Vulcan nemlétét is: az einsteini fizika szerint a Nap óriási tömege miatt képes “meggörbíteni a teret és időt”, a Merkúr pedig olyan közel kering központi csillagunkhoz, hogy már ebben az eltorzult téridőben kering. Az einsteini fizika így magyarázatot adott a Merkúr különös mozgására, többek között a bolygó perihéliumvándorlására is. Ezt a jelenséget, vagyis az égitest napközelpontjának folyamatos mozgását a klasszikus, newtoni fizika csupán egy másik égitest zavaró hatásával tudta megmagyarázni.

A Merkúr perihéliumvándorlása

Ahogy Isaac Asimov mondta, a Vulcan örökre le lett radírozva az égboltról. A csillagászok nyilvántartásaiból ki-, a térképekről lekerült. A korábban történt bolygóészlelések pedig minden bizonnyal napfoltok vagy csillagok voltak. A Vulcan története pedig arra tanította az embert, hogy a természet törvényei bonyolultabbak, mint hinné.

Források: [1] [2] [3] [4]

A Merkúr átvonulása a Nap előtt

Szerző: Rezsabek Nándor

A Merkúr-átvonulás főbb adatai és időpontjai (A helyi időhöz az UT-ben megadott időpontokhoz egy órát hozzá kell adni) Forrás: EclipseWise.com

November 11-én az idei esztendő legfontosabb csillagászati eseményére vagyunk „hivatalosak”: a Merkúr bolygó átvonul csillagunk, a Nap előtt. Reméljük, Olvasóink kedvező időjárási körülmények között, derült időben lehetnek részesei a természeti jelenségnek. A megfigyelés kapcsán fontos megjegyezni, hogy az kizárólag biztonságos napszűrővel ellátott csillagászati távcsőbe pillantva lehetséges. Erre az ország számos pontján, csillagvizsgálókban, továbbá csillagászati szervezetek által tartott távcsöves bemutatókon lesz lehetőség. A megfigyelők a Nap korongja előtt elvonuló foltként láthatják a belső bolygó fekete sziluettjét.

A Merkúr átvonulása a Nap előtt, 2016. május 9-én (Fotó: Elijah Mathews) 

Csillagászattörténeti kutatások szerint minden idők egyik legnagyobb hatású asztronómusa, a heliocentrikus világkép megalkotója, Kopernikusz sohasem látta a Merkúr bolygót. Nemhogy távcsővel – hiszen azt csak évtizedekkel később alkották meg, majd használták csillagászati célokra –, de szabad szemmel sem. A dolog magyarázata, hogy a Merkúr kizárólag napnyugta után és napkelte előtt látható, de központi égitestünkhöz valóközelsége miatt igencsak rövid ideig. Fényessége pedig jóval elmarad a népnyelvben Esthajnalcsillagnak nevezett, a Szentírásban egyedüliként konkrétan említett bolygótól, a Vénusztól. Így megtalálása nem is olyan könnyű feladat, megpillantása minden esetben kizárólag a horizonthoz közel lehetséges.

A Merkúr és a Vénusz legnagyobb kitérései (Kép: history.nasa.gov)

Szabad szemmel fényes csillagnak tűnik; csillagászati távcsővel vizsgálva kisméretű korongja a Holdhoz, valamint a Vénuszhoz és a Marshoz hasonlóan fázisokat mutat. Naprendszerünk központi csillagához legközelebb rója köreit, emiatt napsütötte oldalán közel félezer fokos pokol uralkodik, árnyékos felén pedig majdnem mínusz kétszáz fok a hőmérséklet. Tengely körüli forgása igen lassú, három fordulata alatt kétszer is megkerüli a Napot. Így ottani időszámítás szerint egy Merkúr-esztendő mindösszesen másfél Merkúr-napig tart. Ha léteznének értelmes élőlények a felszínén – valójában primitív organizmusok sincsenek arrafelé –, másfél naponta ünnepelnék születésnapjukat. A bolygó külső megjelenésében megtévesztésig hasonlatos a Föld Holdjához. Ugyanúgy kozmikus sebhelyek borítják felszínét, melyeket a Naprendszer életének korai szakaszában bekövetkezett intenzív kisbolygó- és meteoritbecsapódások okoztak. Ezek közül a Caloris-medencét kialakító olyan pusztító volt, hogy az 1300 km átmérőjű óriáskráter mellett a szilárd bolygófelszínen végigfutó hullámok az égitest átellenes pontjában találkozva kaotikus felszíni formákat hoztak létre.

A Merkúr a MESSENGER űrszonda felvételén

S’ bármily furcsán hangzik, a Merkúrnak van magyar vonatkozása! Felszínén ugyanis Bartókról, Jókairól, Lisztről, valamint (utolsóként 2013-ban, a MESSENGER űrszonda felvételeire alapozva, a keresztelésre hivatott Nemzetközi Csillagászati Unió jóvoltából) Petőfiről neveztek el egy-egy krátert.

Szondák a Merkúr és Vénusz vonzásában – I. rész

Naprendszerünkben a bolygónk és csillagunk közti közel 150 000 000 km-es távolságot két bolygószomszédunk: a Merkúr és a Vénusz pályája is keresztezi. Mindketten a Naprendszerünk belső bolygói, bolygószomszédaink, tanulmányozásuk (leginkább a Merkúr esetében) mégis inkább nagyrészt csak távcsöveinken keresztül zajlik. Az okok, amelyek miatt e két bolygó kutatása háttérbe szorult a Mars, vagy még inkább a Hold kutatásával szemben: egyrészt a Nap körüli pályájuk elérésének technikai nehézségei (főként megint csak a Merkúr esetében), valamint a bolygón uralkodó szélsőséges körülmények (főként a Vénusz esetében). Mindkét ok eddig nehézséget állított a kutatók és mérnökök elé, ám remélhetőleg a technikai fejlődés, a 21. század új ötvözetei és technológiái, – valamint természetesen a szándék – megnyitják az utat a jobb megismerhetőségük felé. A múlt, a jelen és a jövő űreszközeit vesszük most sorra, melyek (egyik rész-) feladata e két bolygó kutatása.

A Merkúr és a Vénusz. (Wikipédia)

Az űrszondák

E téma taglalásánál nem mehetünk el a fogalom megtárgyalása mellett: az űrszondák olyan személyzet nélküli űreszközök, melyek célja hogy (eddig főleg Naprendszerünkben található) bolygók/holdak felszínét, összetételét, légkörét, jelenségeit, stb. valamilyen formában vizsgálják.

Típusaikat/funkciójukat tekintve lehetnek:

  • elrepülő egységek (flybyerek): elrepülő egységnek, elrepülés jellegű küldetésűnek azt az űrszondát nevezzük, mely lassítás és orbitális pályára állás nélkül halad el egy-egy égitest mellett, annak relatív közelségében, miközben műszereivel adatot gyűjt róla. Egy-egy csillag, bolygó vagy hold ilyen módon történő megfigyelése általában csak részfeladat a szonda útja során. Az elhaladás általában nem kizárólag tudományos célú: az irányítás azért tervezi a szonda pályáját közel egy-egy bolygóhoz, hogy annak tömegvonzását kihasználva ún. gravitációs hintamanővert hajtson végre, mely során az űreszköz sebességet nyer és irányt is változtat. Egy-egy ilyen művelet alkalmazásával kevésbé energiaigényes pályán juthatunk el távolabbi égitestekhez is, így az elrepülés célja elsődlegesen a hintamanőver, és másodlagosan a tudományos adatgyűjtés és megfigyelés. Erre példa az 1973-ban indított Pioneer-11 bolygóközi űrszonda, mely a Jupiter körüli hintamanőverrel jutott el a Szaturnusz közelébe. Végső célja, hogy a Sas csillagkép irányába haladva, 4 millió év múlva megközelítse a legközelebbi csillagokat.

A Pioneer-11. (NASA)

  • keringő egységek (orbiterek): a keringő egységek orbitális pályára állva térképezik fel a bolygót vagy épp kommunikációs átjátszóegységként funkcionálnak a földi irányítás, és a bolygón lévő landoló egységek között. Hordozhatnak kamerát, amely a látható és infravörös/röntgen/stb tartományban készít képeket; spektrométert, az atmoszféra jellemzőinek vizsgálatához; radiométert, a hőmérséklet vizsgálatához; magnetométert, a mágneses tér vizsgálatához; pordetektort, a mikrometeorokat és a bolygóközi térben lévő porrészecskéket vizsgálatához; radart, a domborzat vizsgálatához; sugárzásmérőt, a bolygó által kibocsátott sugárzás vizsgálatához; részecskecsapdát; neutrondetektort, stb. Erre példa a Hold körül keringő LRO (Lunar Reconnaissance Orbiter), mely 2009 óta gyűjti az adatokat elsősorban a későbbi holdexpedíciók számára (potenciális leszállóhelyek keresése és feltérképezése, a Holdon található, emberes holdexpedíciók esetén felhasználható erőforrások keresése és feltérképezése, a holdi sugárzási környezet vizsgálata)

A Lunar Reconnaisance Obriter. (NASA)

  • becsapódó egységek (impaktorok/penetrátorok) és légköri szondák: a becsapódó egységek az égitest felszínére irányítva, azt fékezés nélkül közelítik meg. Műszereik az utolsó másodpercig dolgoznak, és folyamatosan adatokat küldenek az irányítóközpont felé. A történelem első impaktora a 1959 szeptemberében felbocsátott szovjet Luna-2 volt. Tervezett feladata a Hold megközelítése/eltalálása, a kozmikus sugárzás, a napszél, a mikrometeoritok, az interplanetáris anyag és a Hold mágneses terének vizsgálata volt. Becsapódását akkoriban a MTA Csillagvizsgáló Intézetében, valamint a Bajai Obszervatóriumban is detektálták.
    A légköri szondák a becsapódó egységek azon fajtái, melyek légkörrel rendelkező bolygók, gázóriások atmoszférájába érve gyűjtenek adatot annak összetételéről, végül a felszínbe csapódva, vagy a elégve/nyomás által összeroppantva fejezik be pályafutásukat. Erre példa a Galileo légköri szonda (Galileo probe), mely az azonos nevű Galileo szondáról leválva lépett be a Jupiter légkörébe és a 150 km-es ereszkedése során 58 percnyi adatot gyűjtött a helyi időjárásról, majd túlhevült a légkörben és elégett.

A Galileo űrszonda. (NASA)

  • leszálló egységek (landerek): a leszálló egységek olyan űrszondák, melyek az égitest felszínén hajtóművük/hőpajzsuk/ejtőernyőik/légzsákjaik révén „puha” landolást valósítanak meg. Landolásuk után földtani, meteorológiai, szeizmológiai, fotometriai, stb méréseket tudnak végezni, valamint lehetőség szerint képesek talajminta Földre való visszajuttatására is. Remek példa erre az amerikai Viking-1 űrszonda, mely 1976-ban landolt a Mars felszínén.

Távolabbi desztinációk esetén a kutatást végző űrügynökség úgy tervezheti meg az űrszondát, hogy az tartalmaz egy keringő és egy leszálló egységet is, az égitest felszíni és orbitális pályán való egyidejű, költséghatékonyabb tanulmányozása érdekében.

A Viking-1. (NASA)

  • felszíni mozgó egységek (roverek): a roverek mozgásra képes leszálló egységek. Leszállásuk után a földi irányítóközpont vezérli őket, utasítások folyamatos küldésével, általában az égitest körül keringő szondák, műholdak adattovábbítási funkciói segítségével. Az eddigi legsikeresebb rover az Opportunity, mely 2012-ben landolt a Mars felszínén. Jelenleg már több mint 5200 marsi napja végez tudományos méréseket, eközben már megtette a 45. kilométerét.

Az Opportunity űrszonda a Marson. (NASA)

A Merkúr

A Merkúr a Messenger felvételén. (NASA/APOD)

Naprendszerünk legkisebb és legbelső bolygója a Merkúr. Saját holdja nincs. Mérete a Földnek 38%-a (egyenlítői átmérőiket összevetve), a Holdnak 140%-a. Tömege a Földének 5,5%-a, így a Naprendszer 2. legsűrűbb bolygója. Tengely körüli forgásideje 58,6 földi nap, Nap körüli forgásideje 87,9 földi nap. A Merkúr Föld típusú, vagyis kőzetbolygó, sok tekintetben hasonlít Holdunkhoz.

A bolygó vékony atmoszférával rendelkezik, mely főként hidrogénből, héliumból, oxigénből, nátriumból, káliumból és kalciumból áll. Keletkezésüket tekintve a származhatnak a Merkúr kérgében lévő anyagok radioaktív bomlásából, valamint napszélből.

Nap körüli orbitális pályája elliptikus, inkább egy tojásformához, mint körhöz hasonlatos (aphélium: 69 817 079 km, perihélium: 46 001 272 km), tengelyferdesége 2,11° Felszínét, a Holdhoz hasonlóan kráterek, medencék, síkságok tarkítják. A bolygó fémes magja a teljes térfogatának 42%-át teszi ki (szemben a Föld 17%-ával), amely miatt jelentős mágneses tere van.

A Merkúr kutatói

A Merkúrt már az i.e. 14. században is ismerték, első ismert feljegyzései asszír csillagászoktól maradtak ránk. A rómaiaktól maradt ránk a Merkúr elnevezés. Első távcsöves megfigyelése Galilei nevéhez fűződik.

A 20. században elindult „űrkorszak” új időszámítást jelentett a kutatásban is, mivel már nem csak távcsöveinken keresztül, hanem űrszondákkal is vizsgálhatjuk a Merkúrt. Ennek ellenére a bolygó eddig kevésbé került a kutatók célkeresztjébe, mivel szondás kutatása nehézség elé állítja a mérnök-szakembereket. A fő probléma, hogy minél közelebb keringünk a Nap körül, annál gyorsabb sebességre kell felgyorsulnunk. Míg a Föld másodpercenként max. 30,28 km-t tesz meg a Nap körül (365 nap alatt kerüli meg), ez az érték a Merkúr esetében majdnem a duplája, 58,98 km/s (88 nap alatt). A bolygót elérni kívánó szondának el kell érnie ugyanezt a sebességet, de egyúttal az orbitális pálya belépési pontjának közelében lassítania is kell annyira, hogy ténylegesen keringési pályára állhasson. Jelenleg több üzemanyag szükséges a Merkúr eléréséhez, mint a Naprendszer elhagyásához.

  • Mariner-10: Az 1973. november 3-án indított Mariner-10 űrszonda elsődleges feladata a Vénusz és a Merkúr atmoszférikus és felszíni vizsgálata volt. Műszerparkja magnetométerből, UV sugárzásmérőből, UV spektrométerből, kamerákból, töltött részecske teleszkópból, IR sugárzásmérőből és egy plazmadetektorból állt. Mivel a Merkúr megközelítése a fent tárgyalt problémába ütközik, a Mariner fejlesztőmérnökei úgy döntöttek, hogy egy, a Vénusz körül végrehajtott hintamanőverrel juttatják majd el a szondát a Merkúr közelébe, egy olyan Nap körüli pályára, mely során a szonda kis pályakorrekcióval minden egyes keringése során találkozik majd a bolygóval (a Merkúr épp két Nap körüli fordulatot tesz meg eközben). Az első elrepülésre 1974. március 29-én került sor, ez volt a történelemben az első alkalom a planéta ilyen közeli tanulmányozására. A Mariner-10 észlelte a Merkúr mágneses mezőit, valamint több mint 600 fotót készített. A következő két elrepülésre 1974. szeptember 21-én, és 1975. március 16-án került sor. Mivel mindhárom alkalommal a bolygó ugyanabban a Nap körüli helyzetben volt, a Mariner-10 csak a Merkúr 45%-át tudta feltérképezni. 8 nappal az utolsó elrepülés után a szonda manőverezésre használt nitrogén hajtóanyaga elfogyott, a mérnökök a rádióadójának lekapcsolása mellett döntöttek. A Mariner-10 valószínűleg jelenleg is Nap körüli pályán halad, bár berendezéseit a napsugárzás már jelentősen károsíthatta.

A Mariner-10. (NASA)

  • MESSENGER: A 2004. augusztus 3-án indított űrszonda neve (melynek jelentése: hírnök, futár – ahogy a Merkúr bolygó névadója is a római Mercurius, az istenek szárnyas csizmájú hírnöke) egy mozaikszó: MErcury: Surface, Space ENvironment, GEochemistry, and Ranging – azaz Merkúr: Felszín, Űrbeli környezet, Geokémia és Felderítés. Ezen űreszköz lett a bolygó első állandó keringő kísérője, mikor 2011. március 18-án a Merkúr körül pályára állt. Előtte olyan Nap körüli pályán mozgott, mely során kétszer elrepült a Vénusz, és háromszor a Merkúr körül, majd a negyedik közelítés során állt végleg pályára a bolygó körül. Műszerparkja képalkotó berendezésekből, gamma sugárzás és neutron spektrométerből, magnetométerből, lézeres magasságmérőből, atmoszféra és felszínösszetétel vizsgáló spektrométerből, töltött részecske és plazma spektrométerből és röntgen spektrométerből áll. Az első három elrepülés során befejezte a Mariner-10 munkáját és lefotózta a bolygó 95%-át, mérte a mágneses mezőt, bizonyítékot talált korábbi vulkanikus tevékenységre, valamint – nem várt módon – víz jelenlétét mutatta ki a Merkúr exoszférájában. Végső pályára állása után az eredetileg 2012-ig tartó küldetését egy évvel meghosszabbították. 2013-ban két, a közelben elhaladó üstökös tanulmányozásában is részt vett. 2015-re az űrszonda hajtóanyaga elfogyott, a fedélzetén megmaradt hélium felhasználásával az irányítóközpont a Merkúr felszínébe vezette. A becsapódásra 2015. április 30-án került sor a bolygó Suisei Planitia nevű medencéjében.

A Messenger a Merkúrnál. (NASA)

 

  • BepiColombo: A BepiColombo űrszonda (mely nevét Giuseppe „Bepi” Colombo olasz asztrofizikus után kapta, aki nevéhez fűződik többek közt a hintamanőver kidolgozása) az Európai (ESA) és a Japán Űrügynökség (JAXA) közös projektje a Merkúr tanulmányozására. A küldetés tulajdonképpen egy műholdpár együttes indítását takarja: a Mercury Planetary Orbiter (MPO, gyártja az ESA), és a Mercury Magnetospheric Orbiter (Mio/MMO, gyártja a JAXA), melyek együtt a Mercury Transfer Module egységen (MTM, gyártja az ESA) indultak el 2018. október 20-án (a hordozóeszköz egy Ariane-5 rakéta). Az ESA számára a részegységeket az Airbus gyártja.

A szondapár 7 évig fog utazni, meghajtásáról ionhajtóművek gondoskodnak. 2025 decemberében fognak a Merkúr körül orbitális pályára állni, majd szétválva kb. egy éven át tanulmányozzák a bolygót. Fő feladataik: egy csillagához közeli bolygó keletkezésének és fejlődésének tanulmányozása; a Merkúr, mint bolygó tanulmányozása (alak, belső szerkezet, összetétel, geográfia, kráterek); az exoszféra vizsgálata; a magnetoszféra és mágneses mező vizsgálata; valamint Einstein relativitáselméletének igazolásához is igyekeznek hozzájárulni (a „paraméterezett poszt-newtoni formalizmus” gamma és béta értékének nagy pontosságú megmérése).

Az MPO műszerparkja: lézeres távolságmérő; gyorsulásmérő; magnetométer; IR spektrométer; gamma és neutronspektrométer; röntgen spektrométer; UV spektrofotométer; semleges és töltött részecskeelemző; nagy felbontású és sztereokamerák; valamint napintenzitást vizsgáló röntgen és részecske spektrométer.

Az MMO műszerparkja: elektron analizátorok, ion analizátorok, tömegspektrométer, nagy energiájú részecskeelemzők elektronok és ionok részére, magnetométer, plazmahullám elemző, kén atmoszféra képalkotó; valamit kozmikus por elemző.

A BepiColombo. (ESA)

 

Szerző: Szekretár Zsolt

(folytatása következik)

BepiColombo: irány a Merkúr!

Ma, október 20-án, helyi idő szerint hajnali 3:45-kor indult el a Merkúr felé az európai (ESA) – japán (JAXA) koprodukcióban készült BepiColombo nevű űrszonda a dél-amerikai Kourou Űrközpontból, Francia Guyanából.

Az ESA és a JAXA közös küldetése, a BepiColombo. (Kép: Arianespace.com)

A BepiColombo célja Naprendszerünk legbelső bolygója, a Merkúr. Küldetésének célja egyrészt új technológiák, például a Nap hőjének ellenálló anyagok tesztelése; másrészt a Merkúr eddig feltáratlan rejtélyeinek kivizsgálása. Valójában nem is egy, hanem két űrszonda utazik a bolygó felé,  egy európai és egy japán szonda, összekapcsolódva. Feladataik közé tartozik többek között a Merkúr mágneses mezejének, belső szerkezetének, rejtélyes zsugorodásának vizsgálata épp úgy, mint annak a kiderítése, hogyan jöhetett létre egy bolygó ilyen közel a Napunkhoz.

A fellövés pillanatai. Képek: ESA/facebook.

Az űrszonda megérkezéséig azonban sokat kell várni: a különböző hintamanőverek miatt – melyeknek célja a szonda pályájának a Merkúr pályájával történő minél pontosabb szinkronizálása – a BepiColombo csak 2025. decemberében fog pályára állni a bolygó körül, melyet a tervek szerint két évig fog tanulmányozni.

Kép: Arianespace.com

Forrás: ESA, Arianespace, Facebook.

Szerző: Planetology.hu