A 66 millió éve történt becsapódásnak köszönhetjük az amazóniai esőerdőt

Szerző: Ivanics-Rieger Klaudia

Egy nemrég megjelent tanulmány szerint a fosszilizálódott pollenek és levelek kimutatták, hogy az aszteroida, mely a dinoszauruszok kipusztulását okozta, egyúttal át is formálta Dél-Amerika növénytársulását, hogy így létrejöjjön a bolygó legnagyobb esőerdője. A tanulmányt Carlos Jaramillo, a panamai Smithsonian Trópusi Kutatóintézet paleobiológusa és Bonnie Jacobs, a Déli Metodista Egyetem paleobiológusa írta. Jarmillo kolumbiai származású és kifejezetten hazája trópusi erdőinek eredetét akarta megvizsgálni. A dinoszauruszok és fosszíliák rajongóinak körében igen jól ismert az aszteroida-becsapódás, mely 66 millió évvel ezelőtt kipusztította a dinoszauruszokat, mint amilyen a Tyrannosaurus rex. De azt gyakran figyelmen kívül hagyják, hogy a becsapódás más ökoszisztémákat is eltörölt. Egy új tanulmány kimutatta azonban, hogy ezen események egy másik, különösen fontos eredményhez vezettek, méghozzá az amazóniai esőerdő kialakulása, ami a bolygó leglátványosabb és legváltozatosabb környezete. A tanulmányhoz több tízezernyi növényfosszíliát elemeztek. Kimutatták, hogy a kihalás egyben egy hatalmas újraindító esemény is volt a neotropikus ökoszisztémák számára: teljesen új ösvényre terelte az evolúciójukat, ami a mai változatos és látványos ökoszisztémájához vezetett. Ezen felismerés alapvető előrelépést jelent a tudásban és új lendületet ad a trópusokon élő evolúciós örökség megőrzésének. Ez nagyon fontos, hiszen a terület olyan, ember által okozott fenyegetéssel áll szemben, amely hatalmas pusztításokat okoz Amazóniában. Pedig az esőerdő fajok millióinak létét alapozza meg, beleértve az emberét is. A szerzők szerint a becsapódott aszteroida evolúciós és ökológiai kihatással volt az amazóniai esőerdő kialakulására és más, kulcsfontosságú élőhelyekre az egész bolygón. A mai esőerdők tehát szerves részét képezik a földi életnek. Különösen az amazóniai játszik döntő szerepet a bolygó édesvízi körforgásának és éghajlatának szabályozásában. Sok akadémikus és amatőr kövületvadász eddig nem sok figyelmet fordított a trópusi területekre, mivel feltételezték, hogy a meleg, nedves helyek körülményei megakadályozzák a szerves anyagok megkövülését.

Késő-karbon kori megkövült páfránylevél Ohioból. Forrás: Wikipedia

Ám körülbelül 50 000 pollenszemet és 6000 fosszilizálódott levelet elemeztek 12 év alatt úgy, hogy a nulláról kellett elindulni. A vizsgálatokból kiderült, hogy az aszteroida – mely feltételezhetően az úgynevezett Baptistina-család tagja volt és már 160 millió évvel ezelőtt leszakadt a csoportjától, elszabadulva a Mars és Jupiter közti aszteroida-övezetből – bár kipusztította a dinoszauruszokat, ugyanúgy az amazóniai esőerdőt is kialakította. Ismert tény az is, hogy a becsapódás okozta hatások és annak közvetlen illetve közvetett következményei függenek a helyi viszonyoktól és a krátertől való távolságtól, amely a Yucatán félszigeten található és a Chicxulub nevet viseli.

A 66 millió évvel ezelőtt történt kihalást okozó Chixculub-kráter feltételezett becsapódási helye, a mexikói Yucatán-félsziget.
Forrás: NASA/JPL-Caltech

Az új-zélandi erdők például viszonylag sértetlenül megúszták, de a kutatóknak fogalmuk sem volt, hogy az esemény miként változtatta meg Afrika vagy Dél-Amerika trópusi esőerdőit. Ahogy ritkák a komplett csontváz kövületek, úgy egész fák sem őrződnek így meg. Jaramillo és kollégái ezért vizsgálták a levélmaradványokat, sőt, a mikrofosszíliának számító polleneket, a virágport. Ezek sajnos eléggé alulértékeltek, hisz nem olyan látványosak, mint egy dinoszaurusz. Pedig ugyanúgy rengeteg fontos információt hordoznak, mint a csontok. Például szépen fel lehet mérni belőle, hogy milyenek volt az adott kor növénytársulásai. Jaramillo és munkatársai egész Kolumbiában mintegy 53 helyszínt tanulmányoztak. Olyan helyeket kerestek, melyek egyrészt közvetlenül a becsapódás előtt illetve a következő tízmillió évben, a paleogén időszakban keletkeztek. Itt találták a rengeteg fosszilis levelet és pollent, melyek alapján már le tudták írni azokat a növényeket, melyektől származtak. Friss, ettől különálló tanulmányok már kimutatták, hogy a több fényt kapó leveleknek nagyobb a vénasűrűsége valamint a 13-as izotóp aránya. A falevelek formája az éghajlatra vagy annak változására is utal: a lekerekített szélűek a meleg, a fogas szélűek illetve az osztott levelek a hidegebb éghajlatokra jellemzők inkább. A csapadékot pedig a levelek mérete jelzi: a nagyméretű levelek több csapadékra utalhatnak. A kutatók a kövületek ezeket a jellemzőket tanulmányozták, hogy bemutassák a becsapódás utáni állapotokat. Más tanulmányokból szintén ismertek a következő tények: a becsapódás után a környezeti hatások miatt elindult nagytömegű fajkipusztulás először a gombák elszaporodását okozta, majd az olyan páfrányok vették át az uralmat, mint amilyenek a pajzsikafélék. Nagyobb erdők csak ezután jelentek meg. Ezen fák nagyrészét hüvelyesek alkották, melyek termése rengeteg tápanyagot tartalmazott. Ez az addig inkább mindenevő emlősök (jórészt rágcsálófélék) táplálkozását is átalakította, illetve segített az emlősök gyors elterjedésében és a különböző fajok kialakulásában. Tehát a becsapódás utáni új növénytársulások létrejötte elősegítette azt a fejlődési utat, mely végül az ember kialakulásához vezetett. A kataklizmikus megsemmisülésből főnixmadár-szerűen új élet sarjadt. A jelen kutatásból a tudósok ezt Dél-Amerikára is le tudták vetíteni. A becsapódás előtt ezt a régiót főként tűlevelű növények jellemezték, a nyitott lombkorona alatt a páfrányoknak is lehetőségük volt a burjánzásra. A dinoszauruszok valószínűleg kulcsfontosságú szerepet játszottak ezen erdők fenntartásában, például a növényzet kitisztításával, a fák ledöntésével. Az aszteroida becsapódásával azonban ez az ökoszisztéma egy pillanat alatt és visszavonhatatlanul megváltozott. A kataklizma után a valószínűleg több évig tartó tüzek elnyelték Dél-Amerika déli erdőit. A szerzők számításai szerint számos állat mellett a trópusi növényfajok mintegy negyvenöt százaléka is eltűnt a területről. Hatmillió évbe telt, mire az erdők egyáltalán visszanyerték a biodiverzitás azon szintjét, amely a becsapódás előtt volt. Ám a lassan visszanövő fajok teljesen mások voltak, mint korábban. A megjelenő hüvelyesek olyan növények, melyek szimbiotikus kapcsolatot alakítanak ki azon baktériumokkal, melyek lehetővé teszik számukra a nitrogén megkötését, ezáltal gazdagították a korábban tápanyagokban szegény talajt. Ez és a kataklizma után keletkező hamu foszforja lehetővé tette, hogy a hüvelyesek mellett más virágos növények is kifejlődjenek, így kiszorítva a tűlevelűeket. Ezen fajok már sűrű lombkoronát alakítottak ki, így versenyezniük kellett a fényért. Ezáltal alakult ki a ma ismert, több szintből álló amazóniai esőerdő.


Forrás:
Rachel Nuwel – The asteroid that killed the dinosaurs created the Amazon rain forest (Scientific American 2021. ápr.1.)
A cikk az eredeti, angol nyelvű cikk felhasználásával készült.

Megfogható világok

Szerző: Ivanics Ferenc, Bakonyi Csillagászati Egyesület

Egyesületünk mindig is arra törekedett, hogy bárki számára közelebb hozza, élményszerűvé és kézzelfoghatóvá tegye a csillagászat és az űrkutatás világát. Már-már vesszőparipánkká vált, hogy a tudományos ismeretterjesztés interaktív formában mindenkinek elérhetővé váljon. Mégis, vannak olyan emberek, akik esetén elsőre lehetetlennek tűnik mindez. Ők a látássérültek. A mi fejünkben azonban már három évvel ezelőtt megfogant egy gondolat: szerettük volna valamiképpen az ő számukra is elérhetővé tenni az Univerzumot. Mind a mai napig, ha valaki a csillagászati ismeretterjesztésre gondol, akkor általában egy távcsöves bemutató képe villan fel lelki szemei előtt. Egy ilyen bemutató azonban, ahol elsődlegesen a szemünket használjuk, egy vak ember számára nem releváns. Egyesületünk már az első pillanattól kezdve azon volt, hogy a hagyományos, távcsöves ismeretterjesztés mellett, azzal egyenrangú programokat dolgozzon ki. Programjainknak már indulásunktól kezdve részei a kézzelfogható makettek, modellek és kőzetek. Ebből kiindulva hamar meg is született az ötlet: kézzelfoghatóvá kell tenni a világűrt, hiszen a látássérültek leginkább a kezüket, a tapintást használják tájékozódásra. Fő eszközünk pedig a nemrég már hazánkban is elterjedt és az átlagember számára elérhetővé vált 3D nyomtatás lett. Azonban az ötlet hosszú éveken keresztül csak álom maradt, mivel más programokra koncentráltunk. Tavaly, az év második felében azonban végre elkezdtük ennek az új és formabontó, részben kísérleti programnak a megvalósítását.

Mivel egy vidéki, nonprofit egyesület vagyunk minimális erőforrásokkal, először is támogatókra, szponzorokra volt szükség, hogy álmunk valóra váljon. Szerencsére nem kellett messzire mennünk az ajkai Schwa-Medico, illetve a budapesti Thermo Épgép Kft. egyből projektünk mellé álltak anyagi támogatásukkal. Ezután 2020 decemberében végre belevághattunk a program gyakorlati megvalósításába, ami korántsem volt olyan könnyű, mint azt elsőre gondoltuk.

A fő lépés természetesen a tapintható makettek és modellek legyártása volt. Ennek első elemeként kidolgoztunk egy tematikát, ami részletesen bemutatja saját bolygórendszerünket. Jelenlegi programunkban a Naprendszer égitesteit szándékozunk bemutatni. Végül 46 db égitestet választottunk ki nyomtatásra, azok esetenként több érdekes felszíni formájával (ismertebb kráterek, vulkánok, kanyonok, stb.) egyetemben. Így a 3D nyomtatással előállított modellek száma összesen 77 darab lett. A 3D nyomtatás során gyártott modelleket az interneten ingyenesen elérhető adatbázisokból és a NASA honlapjáról töltöttük le. A 3D nyomtatott elemek mellé 9 darab egyedileg készített modell került. Az összesen 86 modell mellé 3 darab valódi meteoritot és egy becsapódások során képződő úgynevezett tektitet is adtunk. Ezen égi kövek már régóta részét képezik bemutatóinknak, ezért semmiképp sem maradhattak ki. A bemutatóhoz egyrészt egy kőmeteoritot választottunk, másrészt két vasmeteoritot, így a főbb típusok képviselve vannak.

A vasmeteoritok közül az egyik az argentin Campo del Cielo egy 3,5 kg-os példánya. A másik az amerikai Canyon Diablo. Utóbbi azért került a gyűjteménybe, mert 3D nyomtatással elkészíttettük mellé a főtömeg által vájt arizonai Barringer-krátert. A vasmeteoritoknak nemcsak a tapintásuk vagy a súlyuk, hanem a szaguk is érdekes, ezért is kerültek bele a tematikába. Egy negyedik kőzet is része a programnak, egy metamorf kőzet, azon belül egy tektit. Rá a kráterképződés bemutatásánál „lesz szükség”. Itt pedig meg kell említenünk, hogy nem minden modellünk született meg 3D nyomtatásból. Egyes makettek egyedi módon, kézzel készültek, ezeket mind Surányi Zoltán tagtársunk állította elő. Két üstökös-modell és az aszteroida-becsapódás folyamatát bemutató hat tábla került ki a kezei közül. Ezek mellett évekkel ezelőtt ajándékba kaptunk egy gittből készült holdfelszínt. Ez azt a területet ábrázolja az Esők Tengerén, ahová a Luna-2 űreszköz 1959-ben becsapódott, vagyis itt érte el először ember alkotta tárgy egy idegen égitest felszínét. A holdfelszín-makettet, mely az egyik legnagyobb a gyűjteményünkben, Vértes Ernő amatőrcsillagász készítette 1974-ben az egykori veszprémi csillagászati szakkör részére. A modell tehát csaknem ötven éves, készítője nem is sejthette, hogy egyszer egy ilyen, az országban egyedi és első programban kap majd helyet. A makettet Surányi Zoltán tagunk újította fel, egy hónapig dolgozva rajta.

A többi makett viszont már 3D nyomtatással készült. Bár egyesületünk is rendelkezik egy ilyen speciális nyomtatóval, egyértelmű volt, hogy az kevés, ezért más segítség után kellett néznünk. Szerencsére az ismerősi körben több embert is találtunk, aki rendelkezik 3D nyomtatóval, például Lisztmaier Gábor. Ők a kisebb maketteket készítették el. Voltak azonban nagyméretű illetve olyan makettek, melyek sok részből álltak, így „házilag” nem lehet őket előállítani. Emellett hamar felmerültek problémák az otthoni nyomtatáskor, mind a magunk, mind a többiek részéről: a nyomatók a fokozott igénybevétel miatt többször felmondták a szolgálatot, emiatt csúszott is a program, bár erre fel voltunk készülve. Szerencsére a nagyobb makettek előállításában segítséget kaptunk a VARINEX Zrt-től, akik ingyen, minden munkatársukat bevonva dolgoztak makettjeinken. Így ők is szponzorjainkká váltak. Az ő kezük alól került ki egy méretarányos naprendszer-modell, egy nagyméretű Tycho-kráter és egy vetületi földtérkép, mely több mint harminc négyzetlapból áll (a földtérkép összeszerelve 1,4 m x 0,7 m).

Ezeket a nyomtatott modelleket aztán mind le kellett festeni. A munka oroszlánrészét Ivanics-Rieger Klaudia végezte. Joggal merülhet fel, hogy miért festjük le a modelleket, ha egyszer vakok számára készültek? Ennek több oka is van. Egyrészt, más programjainkban is szeretnénk felhasználni őket. Másrészt a festés információkkal lát el minket az adott felszínen kitapintható objektumokról. Harmadrészt látók is részt vesznek majd a Tapintható Univerzum programján. Negyedszer pedig a vakok és gyengénlátók közé a színvakok is beletartoznak, nekik pedig, még ha nem is ismerik fel a pontos színeket, azok fontosak a kontrasztok érzékeléshez. Néhány objektum lefestése egyszerű volt: a Hold vagy a Mars esetén elég volt egy-egy adott színnel, szürkével vagy vörössel dolgozni. De egyes bolygók, például a Jupiter már nem volt ilyen könnyű, a vetületi földtérkép festése pedig csaknem egy hetet vett igénybe.

A festés után a makettek fakeretet, illetve állványt kaptak, ezeket ismét Surányi Zoltán készítette el. Ezekre a keretekre kerülnek majd az információs panelek.

A sok makettet természetesen tárolni és szállítani kell valamiben. Ebben másik egyesületi tagunktól, Vágó Gábortól kaptunk segítséget, aki beszerezte a tárolóeszközöket, illetve biztosította a makettek védőcsomagolását. Közben rengeteget gondolkodtunk azon, hogy a program konkrétan hogyan fog megvalósulni. Végül abban egyeztünk meg, hogy a legjobb egy hanganyag összeállítása lesz. Ehhez először írtunk hetvenhét darab rövid, általában egy perc alatt elmondható szócikket az adott makettről, a legfontosabb információkkal. Ezeket a szócikkeket egyesületi tagunk, Nagy Richárd rögzítette hanganyag formájában. Rengeteg munka volt a csaknem nyolcvan szócikk felmondása, amit néha többször is meg kellett tenni, mire végre elnyerték végső formájukat. A hanganyag a honlapunkról lesz elérhető kétféle módon: QR-kód illetve úgynevezett NFC chip formájában, melyeket okostelefon segítségével lehet majd aktiválni, meghallgatni. A chipek beszerzését illetve a szükséges informatikai hátteret egyesületünk informatikusa, Csánitz László biztosította.

A program azonban nem jöhetett volna létre a Vakok és Gyengénlátók Veszprém Megyei Egyesülete nélkül. Először is rengeteg ötletet és jó tanácsot kaptunk a program megvalósításával kapcsolatban az egyesület elnökétől, Csehné Huszics Mártától. Emellett szükségünk volt Braille-írással nyomtatott elnevezésekre is, az összes, tehát mind a 90 modellhez. Ezeket Lebcelterné Veiland Orsolya készítette el számunkra. Ezek a szövegek a chipekkel és QR-kódokkal együtt a makettek keretein, tartóin kapnak majd helyet.

A továbbiakban hosszú és folyamatos együttműködést tervezünk a Vakok és Gyengénlátók Veszprém Megyei Egyesületével. A programot először náluk mutatjuk majd be, de ez inkább lesz egy baráti találkozó és egy kísérleti jellegű teszt. Miután pedig tovább finomítottunk rajta, reméljük, hogy rengeteg helyre eljuthatunk vele, hogy elvigyük a tapintható Univerzumot vakoknak és látóknak egyaránt.

Több mint fél évet töltöttünk e programunk előkészítésével. Egyesületünk minden tagja hozzátett valamit azért, hogy létrejöhessen valami igazán érdekes. A munka során felmerült sok-sok nehézség mellett hihetetlen erőt adott számunkra azoknak a cégeknek és magánembereknek az önzetlen támogatása, akik velünk együtt egy újfajta élményt szeretnének ajándékozni azoknak az embertársainknak, akiknek, nincs lehetőségük megszemlélni a kozmosz csodáit. Az új interaktív programunk még nem debütált ugyan, azonban a munkánkat segítő szakemberek (mondhatom, hogy a barátaink), cégek és munkatársaik elsöprő lelkesedésén keresztül már most sok örömet hozott számunkra. Majdnem két tucat ember, három cég, ismerve vagy ismeretlenül, de azért dolgozott össze, hogy az eltérő érzékeléssel élő társaink mosolyát vagy áhítatát figyelve tanúi legyünk annak, hogy ezek a távoli világok miképp rajzolódnak ki érzékelésük vásznán…

Ez lesz az a pont, amikor munkánk elnyeri valódi értelmét!
Köszönjük támogatóinknak, hogy hittek a projekt céljában és értékében!

Vulkánok és a global dimming

Szerző: Kovács Gergő

2021. április 9-én kitört a Karibi-térséghez, azon belül a Szél felőli szigetekhez tartozó Saint Vincent sziget La Soufrière nevű vulkánja, mely kitörés a XXI. század egyik legnagyobb vulkáni erupcióját okozta.

A La Soufriére kitörése. Forrás: RCI Martinique – YouTube CC BY 3.0

A kitörés jelentős mennyiségű vulkáni port juttatott a légkörbe, az ún. vulkánkitörési index (VEI) szerint a robbanásos kitörés VEI 4-es erősségű, mely még ha nem jelentős, de mindenképpen kimutatható mennyiségű, 0,4-0,6 Tg (teragram=1012 gramm) mennyiségű kén-dioxidot juttatott a légkörbe. Ha a kitörés VEI 5-ös vagy annál erősebb lenne, már elegendő mennyiségű aeroszolt juttatna a sztratoszférába ahhoz, hogy komolyabb mértékben befolyásolni tudja a Föld klímáját.

A VEI-index egyes fokozatainak megfelelő kitörések.
A La Soufriére-ből a légkörbe jutott vulkáni anyag. (NASA)

A kitörés óta körülbelül 20 ezer embert kellett evakuálni a szigetről. Az utcákat, házakat vastag por fedi, a vízellátás és az elektromos áram-ellátás akadozik. A nagy mennyiségű vulkanikus por és gáz mellett a tűzhányóból kiszabaduló rendkívül forró törmelékzuhatag, ún. piroklaszt-ár is óriási pusztítást okozott. A védekezés sikerét jól jelzi azonban, hogy eddig senki nem vesztette életét a szigeten.

A “global dimming” (mely fogalom magyar fordítására nem vállalkozom) a légkörbe jutó aeroszolrészecskék (vulkáni por, kén-dioxid, füst, korom, kondenzcsíkok stb.) napsugárzás-blokkoló hatása, melynek következtében a felszíni hőmérséklet kimutatható mértékben csökken, függően a légkörbe jutó részecskék mennyiségétől, illetve attól, hogy a troposzférába vagy feljebb, a sztratoszférába kerülnek, illetve, hogy az Egyenlítő környékéről terjednek szét a légkörben (ekkor hatékonyabb a terjedésük) vagy nem.

Ez a felszínre érkező napsugárzás mennyisége mellett képes módosítani az esőzések térbeli eloszlását, árvizeket vagy szárazságokat (így éhínségeket is) okozva. A történelem során számos esetben volt példa a global dimming jelentős klímaformáló hatására.

1815-ben a Tambora VEI 7-es erősségű kitörése a rákövetkező évre elhozta “a nyár nélküli év“-et: júniusban Európa és Észak-Amerika szerte havazott, jelentős terménypusztulást és éhínséget okozva. A sors iróniája, hogy ebben az évben, ezen időjárási anomáia hatására írta Mary Shelley a Frankensteint.

Ki gondolta volna elsőre, hogy összefüggés van kettejük között? (Wikipedia nyomán)

A 2001. szeptember 11-ei terrorcselekmény után több napra is a földre parancsolták az USA összes polgári repülőgépét, a meteorológusok példátlan hőmérséklet-növekedést figyeltek meg az országban, melyet a kutatók a kondenzcsíkoknak, illetve azok hiányának tudtak be. Egy friss kutatás szerint hazánkban az éves napenergia-termelésben körülbelül 1-1,3%-nyi csökkenést okoznak a kondenzcsíkok.

Kondenzcsíkok DNy-USA fölött. (MODIS)

Láthatjuk hát, hogy ezen jelenségnek igen komoly klíma- és történelemformáló hatásai is lehetnek. Nem véletlen, hogy a global dimming az egyik potenciális jelöltje az éghajlat lehetséges mesterséges szabályozásának, a geoengineeringnek, ezen belül is az ún. napsugárzás-menedzsmentnek, mely célja a földfelszínre érkező napsugárzás csökkentése, többek között különféle aeroszolok használatával (por, kén-dioxid, titán-dioxid).


Források:
[1] [2] [3] [4]

Bolygós rövidhírek: Földünk nyomokban Theiát tartalmazhat

Szerző: Kovács Gergő

Az Arizonai Állami Egyetem egy kutatócsoportja szerint a Földdel körülbelül 4,5 milliárd évvel ezelőtt összeütközött, majd vele eggyé olvadt Theia bolygócsíra maradványai nyomokban még mindig fellelhetők Földünk köpenyanyagában – számol be a Phys.org.

A Theia összeütközése a Földdel, létrehozva a Holdat és hátrahagyva két anyagbuborékot a Föld köpenyében. Forrás: Li et al.

A legelfogadottabb elmélet szerint Holdunk ekkor keletkezett, a Föld és Theia összeütközésekor kidobódott anyagfelhőből, a két égitest darabjaiból. Arról azonban még nincs egyetértés, fellelhetők-e a bolygócsíra darabjai a Föld belsejében. Az arizonai kutatócsapat által felállított új elméletben a Theia maradványai két zónában koncentrálódtak Földünkben, ezek az ún. nagy alacsony nyírósebességű tartományok (large low-shear-velocity provinces, LLSVPs), az afrikai kontinens és a Csendes-óceán medencéje alatt. A tudósok évek óta tanulmányozzák az LLSVP-ket, melyekben a szeizmikus hullámok lelassulnak, azt sugallva, hogy anyaguk sűrűbb, mint az őket körülvevő köpenyanyag.

Magma felgyülemlés okozza a földrengéseket – ez fog történni, ha kitör a vulkán

Az Izland Dél-nyugati csücskében található Reykjanes-félszigeten napok óta megnövekedett szeizmikus tevékenység zajlik. Habár Izlandon a földrengések mindennaposak, az utóbbi időszakban jelentősen megemelkedett a rengések száma és erőssége.

A földrengések elhelyezkedése és erőssége a Reykjanes-félszigeten. Zöld csillag jelöli a 3-as fokozatúnál erősebb rengéseket

Pár nappal ezelőttig a szakértők álláspontja az volt, hogy a február 24-én kezdődött aktivitás nem magmatevékenység következménye, hanem a kőzetlemezek elmozdulása okozza azt. Március elsején azonban a műholdas felvételek elemzése során ennek az ellenkezője bizonyosodott be.

Úgy tűnik, hogy a közelmúlt eseményei a tavaly kezdődött magmafegyülemlés folytatása. Tavaly ennél jóval kisebb szeizmikus aktivitás miatt hirdettek sárga készültségi fokozatot a térségben.

A friss GPS mérési eredmények szerint a talajfelszín mintegy 30 centimétert emelkedett az elmúlt napok földrengései hatására. A jelek arra utalnak, hogy körülbelül 6 km mélyen mozgolódik a magma és utat keres magának a felszín felé.

Ki fog törni a vulkán?

Itt nem egy darab meglévő vulkánról van szó, hanem egy ezeréves lávamezőről, ahol hasadékok nyílhatnak meg, melyekből forró magma áramlik ki. Habár a közeljövőben bekövetkező lávakitörés valószínűsége egyre növekszik, a szakértők továbbra is óvatosan fogalmaznak. Senki nem képes megjósolni biztosan, hogy mi fog történni és mikor, csupán valószínűségről beszélhetünk.

Hamarosan biztosan felszínre kerül a láva, de azt senki sem tudja, hogy pontosan mikor. A “hamarosan” geológiai léptékben mérve akár 1-200 évet is jelenthet, jegyezte meg a RÚV hírportálnak Þorvaldur Þórðarson vulkanológus.

Jelenleg három lehetséges forgatókönyv van:

  • A szeizmikus aktivitás elcsendesedik leáll minden további következmény nélkül
  • A magma felgyülemlés erősebb szeizmikus aktivitást idéz elő, amely nagyobb (akár 6.5-ös erősségű) földrengéshez is vezethet
  • A magma benyomulás folytatódik és
    • felszakítva a kérget a felszínre ömlik, vagy
    • a felszín alatt megszilárdul
A talajfelszín mintegy 30 cm-t emelkedett a kérdéses területen

Mi fog történni, ha kitör a vulkán?

Szakértők szerint az esetleges vulkánkitörés nem fog emberéletet fenyegetni. A terület geológiai tulajdonságai olyanok, hogy a lávakitörés nem járna robbanással és hamu kilöveléssel, hanem ún. effuzív kiömlés várható. Ez a típusú kitörés lassan folyó lávát produkál.

A kitörés várhatóan egy-két hétig is eltarthat, de nem fogja fenyegetni az utakat, épületeket, lakott területeket. Mindazonáltal a felszabaduló gázok okozhatnak kellemetlenséget, vagy akár veszélyt is jelenthetnek az arra érzékenyek számára, így egy esetleges kitörés esetén kiemelten fogják figyelni a szélirányt és a gázok terjedését.

Veszélyben van a lakosság?

Habár a kitörés helyszíne meglehetősen közel lenne a nemzetközi repülőtérhez, a híres Blue Lagoon fürdőhöz és egy-két kisebb településhez, becslések szerint a láva nem fenyegetne közvetlenül egyetlen települést sem.

Az alábbi képen lilával jelölték a láva várható folyási útvonalát. Két település van a képen: jobbra fent látható Hafnarfjördur, balra lent pedig Vogar.

Forrás: helloizland.hu

A magyarországi porviharok mikéntje és mibenléte

Szerző: Balázs Gábor

Közeledik a nyár és vele együtt a meleg, aszályos időszak is, mellyel párhuzamosan az országban megnövekedtek a porvihar és a porördög észlelések egyaránt. Növekvő gyakoriságuk a klímaváltozással kapcsolatba hozható, melynek következményeként a kialakulásukhoz kedvező feltételek egyre hosszabb időszakban adottak.

Aszály 2020. április 25-én. Ezen a napon az országban
több helyen is porviharok alakultak ki
(https://www.met.hu/idojaras/agrometeorologia/aszalyinfo/)

Jöhet a kérdés, hogy egy, a sivatagokra jellemző jelenség hogyan képződik hazánkban. Az aszályos időszakban kiszáradt magyarországi régiókban, valamint mezőgazdasági munkákat követően fellazult talajban lévő apróbb homok- és porszemcséket a szél könnyedén felkapja, majd elszállítja. Ezt a szállítást eolikus szállításnak, amit szállít, pedig eolikus homoknak nevezik. Ennek velejárója az eolikus erózió is, melyet kettő, egymáshoz szorosan kapcsolódó típusra lehet bontani. Az egyik defláció, ami a fellazult talajszemcsék elfújásását jelenti és olyan területeken jellemző, ahol gyér a növényzet és a fellazult talajszemcsék elég kisméretűek ahhoz, hogy a szél elszállítsa. Hosszútávon ez a talaj felső, termékeny rétegének eltűnését okozza. A szállítás módja a szél sebességétől függ. Alacsony szélsebesség esetén görgetéssel, közepes erősségnél ugráltatva (szaltáció), erős széllökések (60-70 km/h <) esetében lebegtetéssel szállítódik el. Ez okozza a másik típust, a korráziót, ami alatt az előbbiekben említett szél által szállított szemcsék csiszoló, súroló hatása és felszínformálása értendő, de ez országunk esetében nem jelentős mértékű. Ami egyszer felszáll, az később leülepszik. Eolikus homok felhalmozódása olyan területeken jellemző, ahonnan a szél nem szállítja tovább, vagy a folyók nem hordják el. Nyomán futóhomok és a finom porból lösz képződik, ami a Kárpát-medencében leginkább a Pleisztocén időszakban, a Würm-glaciális során volt jelentős. Ilyen területeket Magyarországon leginkább az Alföldön találhatunk, például a Duna-Tisza-közén elhelyezkedő, az ENSZ Élelmezésügyi és Mezőgazdasági Szervezete (FAO) által félsivatagi környezetbe sorolt Duna-Tisza közi homokhátság, a nyírségi parabolabuckák, de a Dunántúli-dombság is ezek a területek közé tartozik. Löszképződményt a Balaton keleti részén is találhatunk magaspartok formájában.

Löszfal
(https://mapio.net/pic/p-7663381/)
Homokhátság
(https://sokszinuvidek.24.hu/eletmod/2019/07/25/homokhatsag-felsivatag-veszely-szarazsag/)
Parabolabucka
(https://slideplayer.hu/slide/3269231/11/images/18/)
Magyarország földtani térképe
(https://slideplayer.hu/slide/13035182/)

Visszatérve a porviharokhoz: ezek a jelenségek Magyarországon leginkább erőteljesebb hidegfrontokhoz kapcsolódnak. Frontok ott alakulnak ki, ahol az érintkező légtömegek között nagymértékű a hőmérséklet-különbség. Egy ilyen jellegű front áthaladása esetén hirtelen meredek szögben érkező hideg levegő gyors feláramlásra készteti a meleg levegőt. Ezekre a frontokra jellemző a hirtelen heves esőzés, mely a frontvonal (ahol a légtömegek találkoznak) mögött haladó kb. 10 kilométer széles csapadékzónában jelentkezik, viszont ennek áthaladása után hideg, de derült idő valószínűsíthető, jó légköri nyugodtsággal. Az ilyen frontok áthaladása előtt és a frontvonal áthaladásánál tapasztalhatunk igen erőteljes, viharos, 90-110 km/h-s széllökéseket, melyek felkapják a homokszemcséket és nagy mennyiségben, lebegtetve elszállítják.

Hidegfront érkezése előtt látható peremfelhő Schmall Rafael felvételén
2019. július 27-én Őrimagyarósdról
Kaposfőn átvonuló porvihar 2019. október 2-án Schmall Rafael felvételein

Ezek a jelenségek a közlekedés szempontjából negatív tényezők, mivel egy ilyen porfelhő belsejében a látótávolság néhány méterre csökken, ezáltal növelve a balesetek kockázatát. Egészségügyi hatásai leginkább a légzőrendszert érintik. Belélegezve a nyálkahártyát irritálja, tüdőbe kerülve pedig köhögést vált ki.

Források:
https://www.origo.hu/egeszseg/20110131-igy-hat-a-szervezetre-a-szallo-por.html
https://www.met.hu/idojaras/agrometeorologia/aszalyinfo/
https://slideplayer.hu/slide/13035182/
https://www.arcanum.hu/hu/online-kiadvanyok/pannon-pannon-enciklopedia-1/magyarorszag-foldje-1D58/magyarorszag-tajai-2807/a-dunai-alfold-loki-jozsef-2A33/dunatisza-kozi-hatsag-kiskunsag-2A3C/
http://tortenelemszak.uni-miskolc.hu/Hallgatoi_anyagok/BA_regeszet/geomorf_ea/losz.pdf
https://sokszinuvidek.24.hu/eletmod/2019/07/25/homokhatsag-felsivatag-veszely-szarazsag/
https://www.idokep.hu/hirkeres/porvihar

Napfoltok és a búza ára

avagy ki fedezte fel Amerikát?


Szerző: Balogh Gábor


Sir William Herschel

1801-ben Sir William Herschel, a német származású angol csillagász meglepő hipotézist tett közzé, miszerint összefüggés lehet a napfoltok száma és a búza ára között. Herschel közel negyven évig (1779–1818) tanulmányozta a napfoltokat. Adatait összevetette Adam Smith: „A nemzetek gazdagsága” (1776) című művének a búza árára vonatkozó adataival is. Mivelhogy megfigyeléseinek legnagyobb része az úgynevezett Dalton-minimumban (1790-1830) történtek meg, amikor kevés napfolt volt, nem vehette észre a naptevékenység 11 éves periodicitását.

A jelenség gazdaságra gyakorolt hatása rendkívül fontos, ezért nem csak csillagászok, hanem gazdasági elemzők is nagyon komoly kutatásokat végeznek annak érdekében, hogy összefüggést találjanak a csillagászati események és a gazdaság között.

Hogyan is befolyásolhatják ezek a csillagászati jelenségek Földünk időjárását, vagy akár éghajlatát? Az első ilyen tudományos megerősítés 1856-ban született, mikor Edward Sabine bebizonyította a napfoltok és a mágneses viharok közötti összefüggést. Ezzel szemben, a napfoltok és az időjárás közötti közvetlen kapcsolatot sokkal nehezebb detektálni, hiszen ezt számtalan dolog befolyásolja. A napfoltok és a búza ára közötti összefüggést még nehezebb megállapítani, hiszen a gazdaság nem egy tiszta fizikai rendszer, ezt számtalan dolog befolyásolja, mint például a politika, tőzsdei spekuláció, vagy akár a tömegpszichológia is. A globalizáció is például egyfajta „védőszelepként” működik az árak esetében.

Herschel ötlete, úgy tűnik, néha „működik”, néha nem, napjainkig sok vita folyik hipotéziséről. Ami érdekes, az a rész, amikor „működik”.

A búza-dollár index alakulása és a napfoltok.
Forrás: Tom McClellan: Sunspots – The Real Cause of Higher Grain Prices

Hasonló összefüggést láthatunk a szarvasmarha-árak és a napfoltok között.

Szarvasmarha-árak és a napfoltok.
Forrás: Sergey Tarassov: Sunspot activity and stock market

Természetesen nagyon sok tényező (gazdasági, technológiai, mezőgazdasági) befolyásolja ezt a korrelációt. Vegyük például a kukorica árát, itt csak 1950-ig láthatjuk a fenti összefüggést, valószínűleg az 1960-as „Zöld Forradalom”-nak köszönhető új technológiáknak. 1950 után ez az összefüggés eltűnik.

Kukorica-árak és a napfoltok. Forrás: Sergey Tarassov: Sunspot activity and stock market

Matematikai számításokkal is tesztelték azt a hipotézist (Burakov), és rövid- és hosszútávú összefüggést egyaránt találtak a napfoltok, a búza terméshozama, ára és a nem teljesítő banki hitelek (non-performing loan, NPL) között.

A napfoltok, ezek az időszakos jelenségek a Nap „felszínén”, fotoszféráján, a többi területhez képest sötét foltoknak látszanak. Valójában egyáltalán nem sötétek, hanem csak a mintegy 5,800°K hőmérsékletű környezetüknél kétezer fokkal hidegebbek, itt negyedannyi a sugárzás intenzitása. A napfoltok egy hasonlattal élve tulajdonképpen hűvös, mágneses dugók egy gödörben, melyek meggátolják a konvektív áramlást.

Napfoltok, forrás: NASA’s SDO
A napfoltok száma és a mért kozmikus sugárzás fordított arányossága.University of Delaware

De hogyan befolyásolhatják a napfoltok a Földi időjárást, pláne a búza árát? Napfoltmaximum idején, tehát amikor több napfoltot látunk a Napon, aktívabb a Nap, kisebb a kozmikus sugárzás intenzitása, napfolt-minimumok idején pedig nagyobb. A kozmikus sugárzás – mely nem is annyira sugárzás, hanem elsősorban nagyenergiájú részecskékből áll – ionizálja a Földi légkört, és ezzel elősegíti a felhő- és csapadékképződést, befolyásolja az időjárást. Különböző földrajzi területeken azonban más lesz a jelenség hatása. Másképpen hat a Föld egészére, globálisan, és más hatásokkal találkozhatunk az egyes földrajzi területeken is. Természetesen, amint már megjegyeztük, rengeteg dolog befolyásolja a gazdaságot, a tőzsdét is.

A Nap azonban nagyobb dolgokba is beleszólhat, és itt talán egyértelműbb az összefüggés.

Amerika felfedezése egy másik példája a Napnak a klímára való hatására. Arra a kérdésre, hogy ki fedezte fel Amerikát, három jó válasz is van. Mindhárom esetben a Nap szólt bele a felfedezésbe, a vikingek esetében pedig a feledésbe merülésébe is. De ki fedezte fel Amerikát? Először, tulajdonképpen, maguk az indiánok. Egyelőre nevezzük őket szibériaiaknak, akik mintegy 15-18.000 évvel ezelőtt, száraz lábbal kelhettek át a Bering-szoroson, követve a vándorló mamutokat. A tengerek szintje jóval alacsonyabb volt, mint ma, ezért ahol ma tenger van, ott egy hatalmas földnyelv kötötte össze Szibériát és Észak-Amerikát. Később, a felmelegedés hatására a jég olvadni kezdett, a tengerek szintje emelkedett, elöntve ezzel Beringiát, létrehozva a Bering-szorost. Az Amerikában ideiglenesen elszigetelődött populációkból alakultak ki az indiánok, helyesebb elnevezéssel Amerika őslakói.

Leif Erikson (Leifr Eiríksson)

Másodjára a vikingek fedezték fel Amerikát, 1001-ben. Ez az úgynevezett „Középkori Meleg Időszak” (Medieval Warm Period) ideje volt 900–1300 között. A hőmérséklet magasabb volt, mint ma, különösen az Észak-atlanti vidékeken. Az akkori átlaghőmérséklet meghaladta a római kori időszakot is. Nőttek a terméshozamok, a népesség rövid idő alatt megduplázódott. Emiatt is vált szükségessé a vikingek számára Grönland gyarmatosítása. Grönland „Zöldföldet” jelent, ez is jelzi, hogy ez a hatalmas, ma jeges sziget déli részét akkor erdők borították, a partok dúskáltak a halakban. Vörös Erik vezetésével a telepesek gabonát termesztettek, háziállatokat tartottak, csaknem 620 ilyen farmot tártak fel Grönlandon, nyolc-kilencezer embernek adva megélhetést.

Maga az amerikai kontinens felfedezése sem váratott sokáig magára. Grönland felfedezése után tovább hajóztak nyugat felé, újabb területeket fedezve fel. Bjarni Herjólfsson hajója 985-ben elszakadt társaitól, és három nap hajózás után megpillantotta az amerikai szárazföldet. Tizenöt évvel később Leif Erikson már egy kisebb telepet is létrehozott a szárazföldön, általuk Vinlandnak elnevezett területen. (Vinland vagy a viking ’vínber’ szóból ered, legjobban ’borbogyó’-nak fordíthatnánk – ez jelenthetett szőlőt is, ribizlit is, vagy a vin szóból, ami viszont mezőt, farmot jelent. Ezt sajnos ma már nem tudhatjuk, mert a középkori viking rúnaírás nem tett különbséget a hosszú és a rövid ’i’ között.) 1960-ban Új-Fundland északi részén, L’Anse aux Meadows öbölben egy viking település maradványait tárták fel, melyet a „Vörös Erik történetében” szereplő Straumfjörð-del azonosítanak.

Jól látható a térképen, hogy a vikingek rövid, part menti hajózással tudtak eljutni Amerikába.
A szerző saját képe.
Viking ház rekonstrukciója. L’Anse aux Meadows National Historic Site,
http://whc.unesco.org/en/list/4

Az idilli helyzet 400 éven át tartott. Az időjárás 1300 után kezdett megváltozni, egyre hidegebb lett, lassan lehetetlenné vált a földművelés. Egy Grönlandon járt püspök 1350-ben már elhagyatott településeket talált itt, a korábban megművelt földek helyett lényegében permafroszt, örökké fagyott talaj fogadta. 1378-ban az Egyház el is hagyta Grönlandot, mikor a part menti hajózás lehetetlenné vált a jég miatt. 1408-ből még fennmaradt egy házassági bejegyzés, de az 1721-es expedíciót vezető Hans Egede már nem talált itt európaiakat, a kontinensen pedig valószínűleg még hamarabb pecsételődött meg a települések sorsa.

Hvalsey templom romjai Grönlandon, Wikipédia
A part menti szakaszok befagytak, lehetetlenné téve a hajózást.
A szerző saját képe.

Véget ért a „Középkori Meleg Időszak” (Medieval Warm Period).

Mielőtt rátérnénk a következő felfedezőre, Kolumbuszra, nézzük meg, hogy mi okozhatta a következő lehűlési időszakokat? Elfogadott elmélet, hogy a nagyobb ciklusoknak, a jégkorszakoknak főként a Milanković-ciklus az oka. Az utóbbi csaknem egymillió évben az eljegesedések 100.000 éves ciklusokban követték egymást, ami tökéletesen megfelel a Milanković-ciklus elméletének, mely egyszerre veszi figyelembe a változó Föld-Nap távolságot, a Földpálya alakját (excentricitását), a precessziót (a földtengely mozgását), az apszidiális precessziót, a forgástengely szögét, és a pályahajlást (inklináció). Természetesen más okai is vannak, különösen nagy geológiai léptékekben, mint például a légkör összetétele, a tektonikai lemezek relatív helyzete, óceánáramlatok, vulkáni tevékenységek, stb.

A Kis Jégkorszakot például, melynek jó részét a Maunder-minimum uralta, az „elhúzódó napfolt-minimum kora”, a napfoltok szélsőségesen kevés száma jellemezte. 1645 és 1715 között a napfolttevékenység szünetelt, illetve szélsőségesen ritka volt.

Napfoltok száma és a hőmérséklet összehasonlítása közép-Angliában
IPCC, Michael Lockwood

De mi a helyzet azokkal az időszakokkal, mikor még nem történt rendszeres napfolt-megfigyelés, és így nem állnak rendelkezésünkre ilyen adatok? Szerencsére a szén 14-es izotópja segítségünkre lehet ebben. Ennek az izotópnak (14C) a képződése a nap aktivitásának függvénye. A 14C a felső atmoszférában képződik, amikor a légköri nitrogénből (14N) képződik a kozmikus sugárzás hatására. Ha a Nap aktívabb, kevesebb kozmikus sugárzás éri Földünket. Ez a 14C, amelyet a sarki jégben vagy akár fák évgyűrűiben találhatunk, egyedülálló lehetőséget kínál a kozmikus sugárzás és a naptevékenység sok évezredes hatásainak a rekonstruálására. Segítségével felbecsülhetjük az adott időszak napfolttevékenységét, és ez által az adott klímát.

A kozmikus sugárzás és a hőmérséklet alakulása. Steinhilber et al

A kozmikus sugárzás intenzitásának csúcsai tökéletesen egybeesnek az adott hidegebb időszakokkal, (O:Oort-, W:Wolf-, S:Spörer-, M:Maunder-, D:Dalton-, G:Gleissberg-minimumok) .

Amerika viking felfedezése felejtésbe merült – Európának még nem volt rá szüksége.

Kolumbusz Kristóf (Cristoforo Colombo)

Kolumbusz családjának – és sok más polgárnak a sorsa azonban egyre nehezebb lett Oszmán Birodalom terjeszkedésével egyidejűleg, ugyanis ez a keleti piacok, kereskedelmi utak megszűnésével járt. A fiatal Kolumbusznak hamar szakítania is kellett a posztókereskedelemmel, és tengerésznek állt. Többek között, 1477-ben eljutott Izlandra, és ez meghatározó fordulat volt életében. Beszélt izlandi tengerészekkel, akiknél a korábbi nyugati utak még nem merültek feledésbe, ahol nem is olyan távoli nagyapáik jártak. Motoszkálni kezdett egy gondolat a fejében.

A tengerészek tudták, hogy a Föld gömbölyű, hiszen a távolodó hajónak először az alja tűnik el. A szerző saját képe

Akkoriban már közismert volt, hogy a Föld gömbölyű, viták csak arról szóltak, hogy mekkora is ez a gömb. Ötlete az volt, hogy nyugat felé hajózva is el lehet jutni a gazdag Indiába. Tudta, hogy ilyen nagyszabású tervhez támogatókra lesz szüksége, néhány ével belül neki is látott támogatást szerezni. Mivel akkoriban Portugáliában élt, először a portugál királyt kereste meg tervével. Az addig jelentéktelen Portugália akkor kezdett tengeri hatalommá válni. II. János portugál király azonban nem látván reálisnak tervét, visszautasította őt. A portugálok inkább Afrikát megkerülve akartak eljutni Indiába.

Ezután a Spanyolországot egyesítő katolikus uralkodókhoz, Aragóniai Ferdinándhoz és Kasztíliai Izabellához fordult. A zűrös politikai helyzet miatt az uralkodók azonban sokáig váratták, csak 1492 januárjában született döntés, hogy támogatják Kolumbusz útját.

Kolombusz három hajójának rekontrukciója, a Santa María, a Pinta és a Niña.
Forrás: Smithsonian Magazine

1492. augusztus 3-án vágott neki az óceánnak három, mai szemmel ijesztően kicsi hajóval. A háromárbocos Santa María karakkal és két kis karavellával, a Pinta-val és a Niña-val. Technikai problémák, hajósérülések miatt a Kanári szigetekről csak szeptember elején indulhattak tovább. Maga a hajóút sem volt konfliktusoktól mentes, Kolumbusz négy hétre becsülte az utat, de ez idő lejártával még mindig a nyílt óceánon voltak. Miután csaknem lázadás tört ki, kozmetikázni kezdte a hajónaplót, kevesebb megtett utat jegyzett fel a hajónaplóban.

Kolumbusz akaratlanul a leghosszabb utat választotta Amerika felé.
A szerző saját képe

1492. október 12-én érték el Guanahani szigetét, melyet San Salvadornak, Szent Megmentőnek nevezett el. Az itt látott taínókat indiánoknak nevezte, mert úgy vélte, hogy Indiába jutott. Tovább hajózott Kubába – melyet Kínának hitt, majd Hispaniolába, és sok más szigetet is felfedezett. 1493. március 15-én ért haza a spanyol Palos kikötőjébe nemesfémmel, fűszerekkel, új gyümölcsökkel, kukoricával, dohánnyal és burgonyával – és az Indiába vezető út felfedezésének dicsőségével. Visszatérte után hősként fogadták, majd újabb utakkal bízták meg. Kolumbusz négy útja után sem tudta, hogy (újra-)felfedezte Amerikát, de ezzel megalapozta a Spanyol világbirodalom születését.

A sors fintora, hogy a reconquista utáni Spanyolország szinte csak nemesekből és nincstelenekből álló társadalma nem volt képes az Újvilág kincseit befogadni, ezek nagyon hamar elfolytak az országból. Spanyolországot a fél világ meghódítása és a fantasztikus kincsek özöne is csak még szegényebbé tette, hiszen nem volt polgári réteg, kereskedők, szakemberek, ipar, bankrendszer. A beáramló érték tovább folyt külföldi országokba, főleg a Németalföldre.



Források:

Burakov, D. (2017) “Do Sunspots Matter for Cycles in Agricultural Lending: a VEC Approach to Russian Wheat Market”, AGRIS on-line Papers in Economics and Informatics, Vol. 9, No. 1, pp. 17 – 31. ISSN 1804-1930. DOI 10.7160/aol.2017.090102. DOI: 10.7160/aol.2017.090102

Easterbrook, D.J.: Evidence-Based Climate Science, ISBN978-0-12-804588-6 

Fizikai Szemle, Kozmikus sugárzás és csillagászat. 1999/1.

Grove, Jean M.; Switsur, Roy (1994): “Glacial geological evidence for the medieval warm period”

Herrera et al.: Reconstruction and prediction of the total solar irradiance: From the Medieval Warm Period to the 21st century. New Astronomy Volume 34, January 2015, Pages 221-233

LiveScience: Humans Crossed the Bering Land Bridge to People the Americas,
https://www.livescience.com/64786-beringia-map-during-ice-age.html

Mann, M. E.; Zhang, Z.; Rutherford, S.; et al. (2009): “Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly” (http://www.geo.umass.edu/climate/papers2/Mann2009.pdf)

McClellan, Tom: Sunspots – The Real Cause of Higher Grain Prices
(http://time-price-research-astrofin.blogspot.com/2017/02/sunspots-real-cause-of-higher-grain.html)


Meadows, A. J. (1975), A hundred years of controversy over sunspots and weather, Nature, 256, 95–97.

NASA’s SDO Observes Largest Sunspot of the Solar Cycle: https://www.nasa.gov/content/goddard/sdo-observes-largest-sunspot-of-the-solar-cycle/

National Geographic, Ancient DNA reveals complex migrations of the first Americans.
https://www.nationalgeographic.com/science/2018/11/ancient-dna-reveals-complex-migrations-first-americans/

Philip Ball: Sun set food prices in the Middle Ages, Nature. (https://www.nature.com/articles/news031215-12)

Potgeiter, M. (2013). “Solar Modulation of Cosmic Rays”. Living Reviews in Solar Physics. https://ui.adsabs.harvard.edu/abs/2013LRSP…10….3P/abstract

Pustilnik, L.A., G. Yom Din: Space Climate Manifestation in Earth Prices – from Medieval England Up to Modern Usa
(https://arxiv.org/abs/astro-ph/0411165)

Science Direct: Medieval Warm Period
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/medieval-warm-period

Solar cycle variations and cosmic rays. Journal of Atmospheric and Solar-Terrestrial Physics, Volume 70, Issues 2–4, February 2008, Pages 207-218. https://www.sciencedirect.com/science/article/abs/pii/S1364682607002726

SolarStorms, Cosmic Rays Received,
http://www.solarstorms.org/Scosmic.html

Steinhilber et al.: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings, https://www.pnas.org/content/109/16/5967

Tarassov, Sergey: Sunspot activity and stock market. http://www.timingsolution.com/TS/Articles/sunspot/

University of Delaware, Cosmic Rays and the Solar Cycle,
http://neutronm.bartol.udel.edu/catch/cr3.html

U.S. Geological Survey, The Sun and Climate. U.S. Geological Survey Fact Sheet 0095-00
https://pubs.usgs.gov/fs/fs-0095-00/

A Naprendszer

Szerző: Csaba György Gábor

Naprendszerünk, mint közismert, Földünk legszűkebb kozmikus környezete. Kiterjedését nem könnyű meghatározni, hiszen nincsenek a térben kitűzött határai. Jobb híján azt mondhatjuk: a Naprendszer addig terjed ki, ameddig a Nap gravitációja erősebb a környező csillagokénál („dinamikai Naprendszer”). Minthogy viszont a csillagok meglehetősen rendszertelenül oszlanak el körülöttünk, az így meghatározott Naprendszer alakja amőba-szerű, távolról sem gömbszimmetrikus lenne. Átlagban a Naptól mintegy 2,5 – 3 fényév (nem egészen 1 parsec) távolságig tart; talán kényelmesebb egy ekkora sugarú gömbbel modellezni.

Naprendszerünk legbelső részében található a bolygórendszer. Ehhez tartozik központi égitestünk, az egészet gravitációs erejével összetartó Nap; továbbá a nagybolygók, a törpebolygók, a kisbolygók, üstökösök, valamint az interplanetáris anyag, amely porból és ritka gázból áll. Az egészet „átfújja” a napszél, és át-meg áthatják különféle erőterek (interstelláris mágneses tér, elektromágneses sugárzások stb.).

A nagybolygók olyan égitestek, amelyek csillag (esetünkben a Nap) körül keringenek, elég erős a gravitációjuk ahhoz, hogy gömb alakúak legyenek, és pályájuk mentén „kisöpörték” az apróbb égitesteket. Lényegében egy közös síkban keringenek a Nap körül, e síktól csak néhány foknyit térnek el. A törpebolygók is gömb alakúak, de pályájuk mentén nem söpörték tisztára a teret. Nem feltétlenül tartják magukat a Naprendszer szimmetriasíkjához közel. A kisbolygók már ahhoz is kicsik, hogy gömb alakjuk legyen; pályájuk inklinációja lényegében tetszőleges lehet.

A Naprendszer külső tartománya és a bolygórendszer közt a Kuiper-öv helyezkedik el. Ehhez sok kis- és törpebolygó tartozik, melyek meglehetősen ritkán és szabálytalanul oszlanak el. Legkívül az Oort-felhő van, a Naptól 1 – 2 fényévnyire; ezt sok, millió vagy inkább milliárd apró, néhány km méretű üstökösmag alkotja. Őket a Földről nem lehet észlelni; de ha valamiért, valószínűleg a közeli csillagok gravitációs zavaró hatása miatt, egyik-másik beesik a Naprendszer belső terébe, és közel jut a Naphoz, akkor a Nap sugárzása miatt anyaga egy része szublimál, s az üstökösmag körül „kómát” alkot. Ennek anyagát a napszél elfújja, így alakul ki az üstökös „csóvá”-ja. Ez, illetve a rajta szóródó napfény szabad szemmel is láthatóvá válhat. A kis égitest, pályáján tovább haladva, idővel persze újra elhalványul (bár a csillagászok sokáig követni tudják műszereikkel), majd eltűnik: távozik Naprendszerünkből.

Ha egy üstökös pályáját valamelyik óriásbolygó gravitációs hatása úgy módosítja, hogy közel ellipszis alakúvá lesz, akkor ez az üstökös nem repül ki a Naprendszerből, hanem többször is körbejárja a Napot. Minden alkalommal párolog, míg minden illó anyaga elfogy, s csak egy kőhalmaz marad belőle. Ez persze tovább kering, de immár sok apró darabja egymástól független pályán. Idővel szétszóródnak a pálya mentén: létrejött egy meteorraj.

A rendszer közepén levő Nap egy „élete” delén járó sárga törpecsillag. Tömege kb. 2·1030 kg, ami az egész Naprendszer össztömegének kb. 99,8%-a. Körülötte – pontosabban: vele közös tömegközéppontjuk körül – keringenek a bolygók, stb.

A bolygórendszert külső és belső bolygókra oszthatjuk, de ez csak egy mesterséges felosztás. Eszerint belső bolygó a Merkúr és a Vénusz, mivel ezek vannak közelebb a Naphoz, mint a Föld. A többi nagybolygó, a Marssal kezdve, a külső bolygók. Lényeges fizikai tulajdonságaik alapján viszont föld-típusú, illetve óriás– (vagy gáz-) bolygókat különböztetünk meg. A Föld-típusúak a Merkúr, Vénusz, Föld és a Mars. Ezek kicsik, átlagos sűrűségük nagy (3,93 és 5,51 g/cm3 közt), légkörük nincs vagy vékony, holdjuk nincs vagy kevés (a Földnek 1 holdja van, a Marsnak 2 egészen kicsiny és szabálytalan alakú). Ellenben az óriásbolygók, a Jupiter, Szaturnusz, Uránusz és a Neptunusz hozzávetőlegesen egy nagyságrenddel nagyobbak, mint a föld-típusúak, légkörük vastag és sűrű; átlagsűrűségük kicsi (0,69 és 1,64 g/cm3 közé esik), sok holdjuk és gyűrűrendszerük van. A két bolygótípust egy kisbolygó-övezet is elválasztja egymástól: sok kisbolygó kering a Mars és a Jupiter pályája közt.

Ha a rendszer méretarányait akarjuk elképzelni, tekintsük át 100 milliószoros kicsinyítésben. Ekkor a Föld kb. 13 cm átmérőjű, majdnem pontosan gömb alakú labda; rajta 0,08 mm magas, pici ránc a Himalája. Ha rálehelünk a golyóra, s lesz rajta egy vékony pára-réteg: ez vastagabb, mint az óceánok.

A Föld-labdától kb. 4 méterre kering egy dió: a Hold. A Nap 1,5 km-re van, 14 m átmérőjű forró, fényes gömb. A Kuiper-öv a Naptól mintegy 60 km-e kezdődik. A legközelebbi állócsillagok, a Nap „testvérei” ebben a modellben legalább 400 ezer km-re lennének, tehát még a valódi Holdnál is messzebb. (E 400 ezer km-ből már megtette az ember az első 4 métert, a Holdig. Ezt nevezik néha úgy, talán némileg nagyképűen: a világűr meghódítása…)

A Voyager-szondák már elhagyták a bolygórendszert, s most a Naprendszer külső tere felé haladnak. Még sok évezredbe telik, amíg áthaladva az Oort-felhőn, kijutnak Naprendszerünkből a csillagközi térbe. Igaz, gyakran olvasunk olyan hírt, amely szerint e szondák már „hivatalosan” is elhagyták a Naprendszert. Ezekben a hírekben a Naprendszer határát a heliopauzával, a nap által létrehozott „plazmabuborék” határával veszik azonosnak. Ez valahol 18 milliárd km-nél van, modellünkben tehát a Naptól kb. 180 kilométerre. Kétségkívül van különbség a heliopauzán kívüli és belüli plazma fizikai adatai közt, ezért a határt így is lehet definiálni. Ekkor a Naprendszert sokkal kisebbnek tekintjük, mint a „dinamikai” definíció szerint, és ami elég furcsa lenne: ekkor az Oort-felhő már – messze a „határon túl” lévén – nem tartoznék rendszerünkhöz.

A nyári időszámítás érdekességei és jövője

Szerző: Szoboszlai Endre

2020-ban, március 29-én vasárnap hajnalban kezdődik, és október 25-én ér majd véget a nyári időszámítás. A világ számos országában március utolsó vasárnapja és október utolsó vasárnapja közötti időszakban alkalmazzák a nyári időszámítást. Az időszámításba – egyben az élőlények biológiai ritmusba – történő mesterséges beavatkozásnak bizonyára vannak energia-takarékossági hatásai, de vannak negatívumai is…

A nyári időszámítás történetét vizsgálva energetikai, csillagászati, de még hadtörténeti érdekességeket is találunk! Az első világháború időszakában energiatakarékossági okok miatt vezették be az úgynevezett alternatív időszámítást, 1916-ban az USA-ban. Ezt az akkori Magyarország is átvette. A nyári időszámítás lényegében egy olyan megoldás, amikor a helyi időt 1 órával előre állítják az adott időzóna idejéhez képest. Maga az elnevezés azért alakult át, mert ez az időszámítás nagyrészt a nyári időszakra esik – a Föld északi féltekéjén. Érdemes megjegyezni, hogy az arab országok 1973-ban a kőolajat, mint létfontosságú energiahordozót, fegyverként vetették be, ugyanis kőolaj-exportjukat embargó alá vonták. Ezzel olajválság keletkezett a nyugati világ számára. Az energiaínség rákényszerítette a (túl)fogyasztói társadalmakat, arra, hogy a villamos energiával (is) takarékoskodjanak! Az olajválság kapcsán kialakult „energiahiány-sokk” elsőként Franciaországot ösztönözte arra, hogy az 1973-as olajválság tanulsága után bevezesse az energiatakarékossági célú nyári időszámítást (1976-ban).

Magyarországon is hosszú évtizedek óta alkalmazták és alkalmazzák a nyári időszámítást, bár voltak évek, amikor ez szünetelt. Az ötvenes években még az akkori kapacitási nehézségek enyhítésének reményében alkalmazták, míg a későbbi időben az óraátállítási megoldásnak már villamosenergia-megtakarítási célja lett. Magyarországon energetikával kapcsolatos célból 1954-57 között alkalmazták először a nyári időszámítást. Ezen megoldásnak az ötvenes években elsősorban az volt a célja, hogy az akkori villamosenergia-rendszer szűkös teljesítőképessége miatt jelentkező kapacitás-gondot enyhítse. Akkor arra törekedtek, hogy ne kényszerüljenek az egykori áramszolgáltató vállalatok a fogyasztás korlátozására. (Elsősorban a munkanapok esti csúcsterhelésekor jelentkeztek teljesítőképesség-gondok.) Magyarországon 1958 és 1979 között a nyári időszámítás használata szünetelt, míg a villamosenergia-megtakarítási célból történő bevezetése 1980-ban történt.

A természetes világítás kihasználása:

A nyári időszámítás megvalósításának módját az a csillagászattal összefüggő jelenség adta és adja, hogy Földünk északi féltekéjén a napéjegyenlőség kezdetétől (általában március 21) a végéig (általában szeptember 23) hosszabbak a nappalok, és rövidebbek az éjszakák, mint télen. Ebből a tényből az a kézenfekvő előny származhat, hogy amennyiben a napfény által adott ingyenes „fénybiztosítás” nagyjából egybe esik a lakosság ébrenlétével, akkor kevesebb lehet a világításra elhasznált villamos energia mennyisége. Tehát, ha a lakosság átlagos ébrenléti ideje (reggel 7 és este 22 óra között) nagyjából egybeesik a természetes világítás időtartamával, akkor jelentős mennyiségű villamosenergia-megtakarítás érhető el. Ez a felismerés vezetett oda, hogy a kronométereket az utóbbi évtizedekben tavasszal egy órával előre vitték, mégpedig március utolsó vasárnapjának hajnalán (hazánkban 2 órakor 3 órára). Majd aztán ősszel (régebben szeptemberben) egy órával „visszatekerték”. Természetesen ezen megoldás bevezetésekor a menetrendeket is harmonizálni kellett. Az 1990-es évek közepéig hazánkban még az előzőekben említett, szeptember utolsó szombatjáról vasárnapra virradó éjjelen történő (nálunk pontosan vasárnap hajnali 3 órakor vitték vissza az órákat 2 órára), óravisszaállást alkalmazták. Azonban a Nyugat-Európában alkalmazott megoldásra – főleg a nemzetközi utazási menetrendek harmonizációja miatt –, térségünkben is célszerű volt átállniuk a környező országoknak! Így került bevezetésre az, hogy 1996-ban hazánkban is megnyújtották egy hónappal a nyári időszámítás időtartamát.

Októberben már nincs megtakarítás:

Magyarországon tehát 1996-tól kezdődően október utolsó vasárnapjának hajnalán történik a visszaállás a „rendes” (más néven a téli) időszámításra. Bár ez a gyakorlat, vagyis az egy hónappal későbbi visszaállás, ugyan illeszkedik az európai országok gyakorlatához, de célszerű megjegyezni, hogy ez már október hónapban nem jár villamosenergia-megtakarítással! Ennek oka az, hogy az esti 1 órával későbbi időpontban jelentkező világítási célú villamosenergia-megtakarítást ebben az őszi hónapban már kompenzálja a kora reggeli órákban történő (egy órával korábbi), szintén világítási célú többletfelhasználás. Októberben ugyanis már egy hónappal utána vagyunk a csillagászati őszi napéjegyenlőségnek, melynek következtében az éjszakák időtartama nő, míg a nappalok hossza csökken…

Egy érdekes izraeli eset:

Érdekesség, hogy 1999 szeptemberében Ciszjordániában nyári időszámítás volt, míg Izraelben akkor álltak vissza a szokásos időzónára. A ciszjordániai terroristák időzített bombákat készítettek, amit Izraelben lévő társaiknak juttattak el. A társak azonban félreértették a bombák óraszerkezetében beállított időt, így a bombák 1 órával korábban robbantak fel, megölve három terroristát, de így kétbusznyi utas megmenekülhetett…

Lehetnek hátrányok:

Az utóbbi években egyre több szakember veti fel, hogy érdemes-e megbolygatni az életritmusunkat a mesterséges óraátállítással, évente kétszer is? Ugyanis a természetet, az emberek és az állatok életritmusát, nem lehet parancsszóra átállítani! Kimutatták, hogy az állattenyésztésben jelentős károkat okozott ez a megoldás. Például a szarvasmarhák tejhozama csökkent, mivel megzavarták a fejési időpontot. Kimutatták, hogy az óraátállások miatt növekedett a közlekedési balesetek száma. Ezen felül jelentős leterhelést jelent az emberek, főleg a gyerekek, számára a megszokott életritmus megtörése, aminek számos káros hatása lehet, ezért is vetődött fel az utóbbi időben, hogy várhatóan megszüntetnék az óraátállítást.

2021 lehet a megszüntetés éve:

A nyári időszámítás megszüntetéséről az Európai Parlament már 2019 márciusában döntést hozott, vagyis arról, hogy a 2021. év lesz az utolsó, amikor még valamilyen változatban lesz majd óraátállítás. Országonként több megoldással is át lehet majd állnunk, sőt, akár úgy is, hogy egyidejűleg egy adott ország választhatna másik időzónát is attól, amelyikhez jelenleg tartozik! Amennyiben ez bekövetkezne, akkor például Magyarország esetében jelenleg még nem dőlt el a lényeg: vagyis az, hogy hazánk majd a Greenwichi Világidőtől (angol rövidítése és jele UT) egy, vagy két órával fog majd eltérni az „óratekergetés” megszüntetését követően? Vagyis lehet, hogy a nyári időszámítás megszűnte kapcsán, Magyarország a jelenlegi közép-európai időzónából (UT+1 óra) majd átlépne a kelet-európai (UT+2 óra) időzónába, ami tehát két órával eltér a világidőtől. Jelenleg például ilyen a szomszédos Románia.

Szolárgráfia – a Nap égi útjának rögzítése

Szerző: Balázs Gábor

Aki a földrajzban jártas tudja, hogy a Föld tengelyferdesége miatt az egy éves keringési idő alatt a napsugarak beesési szöge folyamatosan változik. Ennek következménye, hogy eltérő lesz a felmelegedés bizonyos időszakokban, aminek velejárója az évszakok váltakozása. Egy másik következménye a szoláris éghajlati övek (szoláris forró vagy trópusi, mérsékelt és hideg éghajlati övek) kialakulása.

Ennek a keringésnek általunk látható része hosszúsági foktól függetlenül, hogy az északi féltekén nyáron magasabban, télen alacsonyabban szeli át a Nap az eget (a déli féltekén pedig fordítva). Ennek rögzítésére jött létre a szolárgráfia, ami egy igen egyszerű szerkezeten alapszik, egy lyukkamerán más néven camera obscura.

Forrás: Gravitáció Blog

Magyarázat röviden: ez egy fénytől védett test oldalán egy kis lyukkal. Az ezen a lyukon bejutott fény pedig a szemben lévő oldalra fordított képet ad (hasonlóan a mai fényképezőgépekhez).

Érdekessége hogy rövid idejű történéseket nem képes rögzíteni, gondolva az eszköz előtt elhaladó autókra vagy gyalogosokra. A „kamera” alapját egy hengeres test adja, melynek belsejét matt bevonattal bevonják az esetleges tükröződésből keletkező plusz sávok ellen. Erre a doboz méretétől függően egy 0,3-0,5 mm-es lyukat készítenek, majd egy fényérzékeny fotópapírt helyeznek el benne (a lyukkal szemben) amire majd a Nap útja „ráég”.

Elhelyezését tekintve a rajta lévő lyuk dél felé néz és mozdulatlannak kell maradnia egészen a leszereléséig (1 hetes – 6 hónapos időintervallum). A garantáltan látványos végeredmény érdekében ideális esetben a két napforduló között (június 21. – december 21. vagy december 21. – június 21.) gyűjti eszközünk Napunk fényét, de akár egy hónapon keresztül történő exponálásból is keletkezhet látványos kép.

Saját felvételemet tekintve a tarjáni MTT-n kapott szolárgráfom vetettem be 2016. augusztus 1-e és január vége között, de a rossz rögzítés és az időintervallum miatt a sávok egymásra „égtek” és egymáshoz képest elcsúsztak.

Végezetül, egy kis segítség a kép értelmezéséhez, mivel folyamatos fényes, sötét és szaggatott sávok váltják egymást:

  • a folyamatos fényes sávok egy derült napot,
  • a folyamatos sötét sávok egy teljesen borult és/vagy esős napot,
  • a nem folyamatos, szaggatott sávok egy felhős napot jelentenek.