Április 13-án startol az online AstroGeo Café

Szerző: Rezsabek Nándor

Április 13-án kedden 19 órakor startol a Galileo Webcast honlapján az AstroGeo Café című online program.

Az AstroGeo Café a klasszikus tudományos ismeretterjesztés motívumát követő új műsor a geonómia és csillagászat érdekességeivel. A műsor neve nemcsak a tudományágakat, hanem a tudományos közlés jellegét is magában rejti. A kávézás a közvetlenséget sugalmazza (akárcsak egy kávé melletti baráti beszélgetés), de egyben jelképezi azt is, hogy a műsor vendégei a tudományos kutatás eredményeit barista gondosságával kínálják az érdeklődőknek. Vendégeink tudományos újságírók, bloggerek, pedagógusok, szakemberek.

Az első adás kínálata:

  • Az időzónák és az óraátállítás eltörlése.
  • 50 éve indult útnak a Vosztok-1 és az első ember az űrbe.
  • Mikor utazik az ember a Marsra?
  • Egy új napciklus elején járunk.

Az AstroGeo Café minden érdeklődő számára nyitva áll, szeretettel látunk mindenkit!

További információ: https://www.facebook.com/events/536958830624892

Bolygós rövidhírek: küldetés az Io felé

Szerző: Kovács Gergő

A Jupiter Io holdjához egy új űrszonda, az IVO (Io Volcano Observer) indulhat a jövőben. Az Alfred McEwen planetológus, a Lunar and Planetary Laboratory (Arizonai Egyetem) vezető professzora által vezetett projekt jelenleg a NASA Discovery Program elbírálása alatt áll – számol be a NASA.

A Galileo felvétele az Io-ról. Fotó: NASA/JPL/University of Arizona

“A tudósok tisztában vannak azzal, hogy az árapályerők extrém hőt generálnak az Io-n (20-szor többet, mint a Földön)…de még mindig nem vagyunk tisztában, pontosan hol és hogyan keletkezik a hő egy bolygó vagy hold belsejében, vagy hogy milyen módon jut a hő a felszínre. De az Io, és annak vulkánjai segíthetnek megérteni, hogyan fejlődnek az egyes világok. Ez a legalkalmasabb hely a Naprendszerben annak megértésére, hogyan működik az árapály-fűtés” – mondta McEwen.

A Tvashtar vulkán kitörése az Io-n.
Fotó: NASA/Johns Hopkins APL/Southwest Research Institute

Az űrszonda négy év alatt legalább 10 alkalommal repülne el közel a hold mellett, miközben az Io vulkanikus felszínét térképezné fel, nagy felbontású képeken és videókon örökítené meg az égitest extrém vulkanizmusát, valamint a gravitációs erő és a mágneses mező változásainak mérésével a felszín alá “látva” követné a hőenergia mozgását a holdon belül.

Bolygós rövidhírek: Földünk nyomokban Theiát tartalmazhat

Szerző: Kovács Gergő

Az Arizonai Állami Egyetem egy kutatócsoportja szerint a Földdel körülbelül 4,5 milliárd évvel ezelőtt összeütközött, majd vele eggyé olvadt Theia bolygócsíra maradványai nyomokban még mindig fellelhetők Földünk köpenyanyagában – számol be a Phys.org.

A Theia összeütközése a Földdel, létrehozva a Holdat és hátrahagyva két anyagbuborékot a Föld köpenyében. Forrás: Li et al.

A legelfogadottabb elmélet szerint Holdunk ekkor keletkezett, a Föld és Theia összeütközésekor kidobódott anyagfelhőből, a két égitest darabjaiból. Arról azonban még nincs egyetértés, fellelhetők-e a bolygócsíra darabjai a Föld belsejében. Az arizonai kutatócsapat által felállított új elméletben a Theia maradványai két zónában koncentrálódtak Földünkben, ezek az ún. nagy alacsony nyírósebességű tartományok (large low-shear-velocity provinces, LLSVPs), az afrikai kontinens és a Csendes-óceán medencéje alatt. A tudósok évek óta tanulmányozzák az LLSVP-ket, melyekben a szeizmikus hullámok lelassulnak, azt sugallva, hogy anyaguk sűrűbb, mint az őket körülvevő köpenyanyag.

Bolygós rövidhírek: tengeráramlásokat feltételeznek az Enceladuson

Szerző: Kovács Gergő

A Szaturnusz hatodik legnagyobb holdja, az 500 kilométeres Enceladus jégburka alatti óceánról azt feltételezik, hogy a Föld óceánjaihoz hasonlóan áramlatok mozgatják – számolt be a Caltech. Az elmélet szerint (a földi tengerekkel és óceánokkal ellentétben) az Enceladus felszín alatti vízköpenye homogén, benne a magból érkező hőt függőleges, ún. termohalin cirkulációk szállítják el.

Az Enceladus, a Naprendszer egyik legvilágosabb objektuma, köszönhetően az égitestet borító jégpáncélnak. Fotó: NASA/JPL/Space Science Institute; kép feldolgozás: Jason Perryt

A hold kis mérete ellenére egy igen izgalmas világ: 2014-ben már felhívta a tudósok figyelmét, amikor a Cassini űrszonda felvételein működő, vizet lövellő gejzírek voltak láthatóak. Az Enceladus egy azon kevés helyek közül a Naprendszerben, ahol nagy mennyiségű, folyékony víz található, így az égitest az asztrobiológusok figyelmének középpontjában áll.

A Föld óceánjaitól az Enceladus vízköpenye sok tekintetben eltér: az előbbi égitest víztömegei részmedencékre tagolhatóak, melyeket a Nap különböző mértékben melegít fel; az Enceladus óceánja globális kiterjedésű, felszín alatti, valamint a Föld átlagosan 3,6 km mélységű óceánjaihoz képest igen mély, legalább 30 kilométer vastagságú. A Caltech végzős diákja, Ana Lobo szerint azonban van a hold tengeráramlatai hasonlítanak a Földéihez. Egy további azonosság van a két égitest óceánjai közt: mindkettő sós vizű.

GRBAlpha: budapesti asztrofizikai “kiskocka” az űrben

Szerző: Vincze Miklós

Azóta tudom biztosan, hogy most aztán már megkérdőjelezhetetlen űrnagyhatalom vagyunk, mióta a múlt héten rájöttem, hogy egyazon hordozórakétával kettő Budapesten összeszerelt műhold is útnak indul a Föld körüli pályára, ráadásul úgy, hogy a két fejlesztőcsapat egyike sem tudott a másikról. Vagy legalábbis arról biztosan nem, hogy okos kis szerkezeteik együtt startolnak Föld körüli pályára. Ha nem lenne ez a nyomorult járvány, még az is könnyen megeshetett volna, hogy a GRBAlphát, az első magyar vezetéssel fejlesztett, kimondottan asztrofizikai kutatásokat végző műholdat készítő barátaim a bajkonuri starthelyen jönnek rá, hogy nem ők az egyetlen magyar küldöttség, hanem ott vannak a buszon a zsebműholdakat már-már rutinszerűen ontó BME pikoműholdjának a SMOG-1-nek “gazdái” is. Persze a járványhelyzet miatt most ők is, ahogyan mi többiek is jobb híján az Interneten fogjuk csak követni a szombat reggeli startot, például a Spacejunkie-s srácok közvetítésében. [LINK] Amikor e sorokat írom, a Gagarin-repülés közelgő hatvanadik évfordulója tiszteletére ragyogó fehérre festett Szojuz 2.1 hordozórakéta immár ott áll a kazahsztáni starthelyen, ahol szombat reggel, magyar idő szerint 7:07-kor harminckét hajtómű lép majd egyszerre működésbe, hogy legyőzze a Föld nehézségi erejét és pályára állítsa (sok egyéb hasznos teher mellett) ezt a számunkra oly kedves Rubik-kockányi kis holdacskát.

De mit is kell tudnunk a GRBAlpháról? A nevében szereplő GRB a Gamma Ray Burst, vagyis gammafelvillanás, gammakitörés rövidítése. A GRB-k az ismert Univerzum legnagyobb energialöketei, melyek a gravitációs hullámok első, 2015-ös detektálása óta egyre inkább a tudományos érdeklődés homlokterébe kerültek. Gammakitöréseket ugyanis olyan folyamatok is okozhatnak, mint például a fekete lyukak vagy neutroncsillagok összeütközése, melyek egyúttal gravitációs hullámokat is gerjesztenek. Ám a LIGO és egyéb gravitációshullám-detektorok hatalmas pontatlansággal képesek csupán a források lokalizálására, mint ahogy egy úszómedence szélénél felvett vízszint-adatsorokból sem tudjuk egykönnyen meghatározni, hogy a medence melyik pontjára dobtuk be a hullámzást kiváltó labdát. Szóval ha azt is tudni szeretnénk, hogy a gravitációs hullámok merről érkeztek, célszerűbb a velük együtt járó gammakitörésekre figyelnünk. Ám egy ilyen felvillanás leginformatívabb és legenergikusabb része épp a rövid kezdeti vagyis “tranziens” szakasza, melyet különösen nehéz elcsípni egy komolyabb röntgen-gamma távcsővel. Mire ugyanis az ember “észbe kap” és oda tud irányítani egy műszert a forrás felé, a kitörés legérdekesebb része rendszerint már el is múlt. A dolgot az sem könnyíti éppen meg, hogy a gammasugárzás nem jut keresztül a Föld légkörén, vagyis ilyen vizsgálatokat minimum a sztratoszférából, de még inkább a világűrből lehet csak végezni, így aztán finoman szólva nem nagyon vagyunk eleresztve az eget folytonosan pásztázó gammateleszkópokkal. Nem véletlen, hogy a GRB-ket is csak az 1960-as években, az űrkorszakban fedezhették fel, ráadásul olyan amerikai katonai műholdak, melyeknek célja a szovjet kísérleti magaslégköri atomrobbantások (melyek szintén gamma-fotonokat bocsájtanak ki) detektálása volt.

Sajnos azonban a gammafelvillanások sem lokalizálhatók egykönnyen: ilyen nagy energiájú fotonokat nem lehet csak úgy lencsékkel meg tükrökkel irányítgatni, fókuszálni, mint ahogy a látható fényt vagy akár a rádióhullámokat szokás. Egy szó mint száz: a GRB-k tranziens szakaszainak gyors, valósidejű detektálása és az iránymeghatározás az asztrofizika valódi, hőn áhított szent grálja. S ha Szent Grál, akkor a Kerekasztal lovagjai az Arthur-mondakörből, s ha Arthur király, akkor Camelot, vagyis CAMELOT. Ez a név az én egyetlen érdemi(?) hozzájárulásom ehhez a projekthez, amelynek ötlete egyébként egy feledhetetlen sörözős brainstorming keretében született meg valamikor 2017-ben. A CAMELOT egy betűszó; viccnek szántam, de megragadt. Cubesats Applied for MEasuring and LOcalazing Transients, vagyis cubesatok (kicsi kocka-műholdak) a tranziensek mérésére és lokalizálására alkalmazva. A CAMELOT-terv lényege a következő receptben foglalható össze: végy nagyon egyszerű icipici műholdból jó sokat. Szereld fel mindegyiket kis gammadetektorokkal, amik önmagukban kis túlzással csak annyit tudnak, hogy ha eltrafálja őket egy kozmikus gamma-foton, akkor azt mondják, hogy “ping”, de a becsapódás időpontját nagyon pontosan megjegyzik. Ha a sok kis műholdacskát szétszórjuk a Föld körül, az egymástól ezer kilométerekre pörgő-forgó sok gamma-detektor egyetlen nagy képzeletbeli ernyővé áll össze, s a műholdak helyét és orientációját ismerve adataikból nagy pontossággal “kiháromszögelhető” a beérkező GRB hőn áhított iránya. Ez adatfeldolgozási szempontból egy komoly feladat, de az elv a maga egyszerűségében elegáns és szép. Képzeljük csak el például, hogy milyen jó lenne egy ilyen kicsi “gammadetektor-egységcsomagot” kifejleszteni, amit aztán “potyautasként” mindenféle műholdra fel lehetne szerelni. Gondoljunk bele, ha ezt a pici, tokkal-vonóval néhány dekás eszközt fel lehetne szerelni a SpaceX sokezernyi StarLink műholdjára. Egy bolygóméretű, s egyszerre minden irányba “néző” gammatávcső jöhetne létre! Ez tehát a nagy CAMELOT-vízió.

A kazah sztyeppéről szombaton felszökkenő GRBAlpha pedig nem más, mint ennek a technikának a legelső demonstrációja; innen a név második fele. Alpha, alfa, a kezdet. A liternyi kisműhold lelke tehát a gammadetektor, annak pedig egy cézium-jodid kristály, amely a gamma-sugárzás hatására látható fényt bocsájt ki. “Ezt érzékeny fotonszámlálóknak nevezett szenzorokkal érzékeljük, majd a jel erősítése és digitalizálása után a csillagászatilag is gyanús jeleket vagy helyben letároljuk vagy közvetlenül a rádiómodul felé továbbítjuk” – mondta Pál András a Konkoly Csillagászati Intézet kutatója, aki a rendszer fejlesztését vezette. “A projekt rendkívül jó példája a nemzetközi együttműködésnek,amelyben japán és magyar kutatók közösen egy olyan csillagászati műszert fejlesztenek kisműholdra amely előtte csak nagy műholdakon repült”, nyilatkozta Masanori Ohno aki a projekt miatt Japánból, Hirosimából költözött Budapestre. “Nagy kihívás volt a teljes detektort úgy megtervezni, hogy ebben a kis térfogatban is elférjen” egészítette őt ki Mészáros László, aki többek közt a detektor mechanikai vonatkozásaiért volt felelős. “A kristály fóliákba való csomagolásánál és összeszerelésénél sokszor hihetetlenül óvatos kézi munkára volt szükség” tette hozzá Jakub Řípa asztrofizikus. “Ehhez amúgy Ohno-szan origami-szaktudására is szükség volt” – mesélte nekem a Sokolébresztő egyik adásában Werner Norbert, aki a projekt tudományos koordinációját segítette. A kisműhold fedélzeti rendszereit a szlovák Spacemanic és Needronix cég készítette a Kassai Műszaki Egyetem Repülőmérnöki Karának munkatársaival és a magyar csoporttal együttműködve, a műhold végső összeszerelése pedig tavaly novemberben a Konkoly Intézetben történt, vagyis a kiskocka egy valódi nemzetközi tudományos-technikai együttműködés keretében jött létre. S ha a GRBAlpha küldetés sikerrel demonstrálja a rendszer működőképességét, akkor nagyot léphetünk előre a CAMELOT-vízió megvalósulása, s a dinamikus gamma-univerzum titkainak feltárása felé.

Hajrá GRBAlpha!

A képek forrása és további információk: https://grbalpha.konkoly.hu/

Bolygós rövidhírek: újra felhőcsík a Marson

Szerző: Kovács Gergő

Újra felhőcsík jelent meg a Marson, látszólag a 17 kilométer magas Arsia Mons vulkán csúcsából “kiindulva”, a Mars Express felvételén látható, körülbelül 1500 kilométer hosszú felhőnek azonban nincs köze a kialudt tűzhányóhoz: ez a légköri képződmény az ún. orografikus felhőzet nevet viseli. Kialakulásának hátterében az áll, hogy a vulkán lábának nekiütköző nedves légtömeg a tűzhányó csúcsán már elég hideg lesz ahhoz, hogy a légnedvesség jégkristályok formájában kicsapódjon. Fontos megemlíteni, hogy ez egy vízjégből álló felhő, a CO2 felhők képződéséhez jóval nagyobb hideg szükséges, ehhez a feltételek 90-100 km-es magasságban adottak.

A vulkánkitörésre emlékeztető felhősáv a Mars Express felvételén. Fotó:
ESA/DLR/FU Berlin/J. Cowart, CC BY-SA 3.0 IGO

Forrás: ESA

Bolygós rövidhírek: indul a Lucy űrszonda

Szerző: Rezsabek Nándor

A Lucy űrszonda cél-égitestjei
Forrás: NASA’s Goddard Space Flight Center Conceptual Image Lab

Ez év októberében indul a Jupiter trójai kisbolygóinak vizsgálatára a NASA Lucy űrszondája. A gázóriás pályájának kozmikus időskálán stabil L4-L5 Lagrange-pontjaiban keringő objektumok közül hét kerül terítékre: a (3548) Eurybates és annak holdja, a (15094) Polymele, a (11351) Leucus, a (21900) Orus, majd egy újabb Föld körüli hintamanővert követően a (617) Patroclus/Menoetius ikerkisbolygó. 12 éves útja során nyolcadikként felkeresi a missziónak nevet adó előembert, Lucy-t meglelő antropológusról elkeresztelt főövbeli (52246) Donaldjohanson aszteroidát is.


Forrás: NASA

Bolygós rövidhírek: egy frissen felfedezett közeli exobolygó

Szerző: Balázs Gábor

2021. március 6-án (az exoplanet.eu adatbázisa szerint) 4869 db exobolygót ismerünk, de mivel az eddig szerzett tapasztalatok szerint a csillagkeletkezés velejárója a bolygókeletkezés, folyamatosan fedezik fel az újabb és újabb, a Naprendszertől távoli bolygókat.

A CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) kutatói a napokban (március 5-én) publikálták friss felfedezésüket, miszerint a kutatócsoport a spektroszkópiát (a spanyolországi Calar Alto Obszervatórium 3 és fél méteres távcsövével és a CARMENES spektroszkópjának felhasználásával) és a fedési metódust (a TESS űrtávcső segítségével) ötvözve azonosított egy rövid periódusú exobolygót egy vörös törpecsillag, tehát a Napnál kisebb és hidegebb csillag körül. Az említett vörös törpe (nevén nevezve Gliese 486) a Földtől 26,3 fényévre, a Virgo (Szűz) csillagképben található.

A felfedezett exobolygó (Gliese 486b) központi csillagától 2,5 millió kilométerre kering, rövid keringési idővel. Ez azt jelenti, hogy a csillaga körüli útját mindössze 1,467 nap alatt teszi meg.

Fantáziakép a Gliese 486b exobolygóról és csillagáról. Forrás: Pixabay)

A további vizsgálatok alapján a bolygó szilárd felszínnel rendelkezik, viszont fizikai paraméterei alapján nem a sima kőzetbolygókhoz sorolható. Bolygónkhoz képest sugara 1,3-szor, tömege 2,8-szor nagyobb. Ennek alapján a bolygó az ún. szuperföldek kategóriáját erősíti. Méreteiből adódóan a felszínén tapasztalható gravitáció is erősebb a Földinél, pontosabban annak 170%-a. Ha még a 70%-kal nagyobb gravitáció nem lenne elég, a 427 ⁰C-os felszíni hőmérséklet teszi számunkra még barátságtalanabbá a leírt exobolygót.

A felfedezést azért is övezi nagy figyelem, mert közelsége miatt lehetőséget biztosít a kutatóknak, hogy megfigyeléseik során minél pontosabban tudják modellezni más bolygók légkörét. Ezen túl abban is a segítségükre lehet, hogy megértsék a Naprendszeren kívüli kőzetbolygók légkörének összetételét és a központi csillaguk rájuk gyakorolt hatását. Ehhez fog hozzájárulni a jövőben induló James Webb űrtávcső is.


Források: [1] [2] [3]

Magma felgyülemlés okozza a földrengéseket – ez fog történni, ha kitör a vulkán

Az Izland Dél-nyugati csücskében található Reykjanes-félszigeten napok óta megnövekedett szeizmikus tevékenység zajlik. Habár Izlandon a földrengések mindennaposak, az utóbbi időszakban jelentősen megemelkedett a rengések száma és erőssége.

A földrengések elhelyezkedése és erőssége a Reykjanes-félszigeten. Zöld csillag jelöli a 3-as fokozatúnál erősebb rengéseket

Pár nappal ezelőttig a szakértők álláspontja az volt, hogy a február 24-én kezdődött aktivitás nem magmatevékenység következménye, hanem a kőzetlemezek elmozdulása okozza azt. Március elsején azonban a műholdas felvételek elemzése során ennek az ellenkezője bizonyosodott be.

Úgy tűnik, hogy a közelmúlt eseményei a tavaly kezdődött magmafegyülemlés folytatása. Tavaly ennél jóval kisebb szeizmikus aktivitás miatt hirdettek sárga készültségi fokozatot a térségben.

A friss GPS mérési eredmények szerint a talajfelszín mintegy 30 centimétert emelkedett az elmúlt napok földrengései hatására. A jelek arra utalnak, hogy körülbelül 6 km mélyen mozgolódik a magma és utat keres magának a felszín felé.

Ki fog törni a vulkán?

Itt nem egy darab meglévő vulkánról van szó, hanem egy ezeréves lávamezőről, ahol hasadékok nyílhatnak meg, melyekből forró magma áramlik ki. Habár a közeljövőben bekövetkező lávakitörés valószínűsége egyre növekszik, a szakértők továbbra is óvatosan fogalmaznak. Senki nem képes megjósolni biztosan, hogy mi fog történni és mikor, csupán valószínűségről beszélhetünk.

Hamarosan biztosan felszínre kerül a láva, de azt senki sem tudja, hogy pontosan mikor. A “hamarosan” geológiai léptékben mérve akár 1-200 évet is jelenthet, jegyezte meg a RÚV hírportálnak Þorvaldur Þórðarson vulkanológus.

Jelenleg három lehetséges forgatókönyv van:

  • A szeizmikus aktivitás elcsendesedik leáll minden további következmény nélkül
  • A magma felgyülemlés erősebb szeizmikus aktivitást idéz elő, amely nagyobb (akár 6.5-ös erősségű) földrengéshez is vezethet
  • A magma benyomulás folytatódik és
    • felszakítva a kérget a felszínre ömlik, vagy
    • a felszín alatt megszilárdul
A talajfelszín mintegy 30 cm-t emelkedett a kérdéses területen

Mi fog történni, ha kitör a vulkán?

Szakértők szerint az esetleges vulkánkitörés nem fog emberéletet fenyegetni. A terület geológiai tulajdonságai olyanok, hogy a lávakitörés nem járna robbanással és hamu kilöveléssel, hanem ún. effuzív kiömlés várható. Ez a típusú kitörés lassan folyó lávát produkál.

A kitörés várhatóan egy-két hétig is eltarthat, de nem fogja fenyegetni az utakat, épületeket, lakott területeket. Mindazonáltal a felszabaduló gázok okozhatnak kellemetlenséget, vagy akár veszélyt is jelenthetnek az arra érzékenyek számára, így egy esetleges kitörés esetén kiemelten fogják figyelni a szélirányt és a gázok terjedését.

Veszélyben van a lakosság?

Habár a kitörés helyszíne meglehetősen közel lenne a nemzetközi repülőtérhez, a híres Blue Lagoon fürdőhöz és egy-két kisebb településhez, becslések szerint a láva nem fenyegetne közvetlenül egyetlen települést sem.

Az alábbi képen lilával jelölték a láva várható folyási útvonalát. Két település van a képen: jobbra fent látható Hafnarfjördur, balra lent pedig Vogar.

Forrás: helloizland.hu

Bolygós rövidhírek: retrográd módon forgó csillagot fedeztek fel

Szerző: Marcu András

Egy 897 fényévre lévő naprendszernél azt figyelték meg, hogy a csillag a körülötte keringő két bolygóhoz képest ellentétes irányban forog, írja a The New Scientist.

Régebben úgy gondolták, hogy egy csillag mindig a bolygók keringési irányában forog, mivel maguk a bolygók a születő csillag körül forgó porfelhőből alakulnak ki. De a K2-290 rendszer nem követi ezt a szabályt.

A K2-290 rendszer három csillagból és két bolygóból áll, amelyek a központi csillag, a K2-290 A körül keringenek. Simon Albrecht és kollegái a dán Aarhus Egyetemről megállapította, hogy a K2-290 A forgástengelye 124 fokkal tér el a két bolygó keringési síkjától, úgyhogy szinte ellentétes irányban forog.

Összehasonlításképpen a mi Napunknál ez az érték csupán 6 fok. A feltételezések szerint a K2-290-nél megfigyelt jelenség oka a csillag születésekor megjelenő turbulenciák miatt lehet.

Érdekesség, hogy a mi Naprendszerünkben a Vénusz ellentétes irányban forog a tengelye körül a többi bolygóhoz képest, míg a Uránusz tengelyferdesége (az égitest forgástengelyének és a keringés pályasíkjára merőleges egyenesnek a hajlásszöge. A Föld tengelyferdesége 23,5 fok, ez okozza az évszakokat) 97.77 fok, tehát a bolygó szinte “gurul” a pályáján.


Forrás: NewsScientist