Bolygós rövidhírek: megérkeztek az első friss képek a Ganymedesről

Ahogy korábbi hírünkben beszámoltunk róla, június 7-én a Juno űrszonda eddig páratlanul közel, 1038 kilométerre repült el a Jupiter legnagyobb holdja, az 5262 kilométeres Ganymedes mellett. Egy nappal a Ganymedes-közelítés után már meg is érkeztek az első képek a Naprendszer legnagyobb holdjáról – olvasható a NASA oldalán.

A Juno űrszonda közelebb repült a Jupiter legnagyobb holdjához, mint eddig bármelyik űrszonda az elmúlt több, mint két évtizedben.

Az első két felvételt a JunoCam, valamint a Stellar Reference Unit – Csillagászati Referenciaegység nevű kamerák készítették a Ganymedesről, olyan figyelemre méltó részleteket mutatva, mint meteoritkráterek, egymástól elkülönülő sötét és világos foltok, valamint olyan felszínformák, melyek tektonikus törésekhez köthetőek.

“Ez volt az az űrszonda, mely legközelebb repült ehhez az óriási holdhoz, egy nemzedék alatt.” – fogalmazott Scott Bolton, a Southwest Research Institute munkatársa, a Juno fő kutatásvezetője. “Időbe fog telni, mire bármilyen tudományos következtetést levonunk, de addig is egyszerűen csak csodálhatjuk ezt az égi csodát.”

A Ganymedes a Juno jún 7-ei felvételén. Kép forrása: NASA/JPL-Caltech/SwRI/MSSS

Az űrszonda, JunoCam nevű, látható fényben operáló kamerájának zöld csatornájában, a hold csaknem egy teljes oldalát megörökítette. Később, ha a kamera vörös és zöld csatornáinak képei is megérkeznek, a felvételekből képesek lesznek egy valódi színes kompotizot is készíteni, melyen a képfelbontás pixelenként 1 kilométer lesz. Az űrszonda továbbá a Stellar Reference Unit nevű, a Juno-t a pályán tartó navigációs kamerával is készített egy felvételt a hold árnyékos, pusztán a Jupiter fényében derengő feléről.

Ez a felvétel a Ganymedes árnyékos oldaláról készült a Stellar Reference Unit nevű kamerával. A kép felbontása 600 és 900 méter/pixel közé esik. Kép forrása: NASA/JPL-Caltech/SwRI

Az űrszonda a közeli jövőben további felvételeket fog küldeni a Ganymedesről. Emellett a Juno mélyebb betekintést fog nyújtani a hold összetételébe, mágneses terébe, ionoszférájába és jégburkába. A ’70-es évek óta feltételezzük, hogy a Ganymedes felszíne alatt a Naprendszer egyik (ha nem “a”) legnagyobb óceánja rejtőzhet két jégréteg közé szorulva. Itt feltétlen meg kell említeni, hogy az óceán alatti jégrétegre már más nyomás hat, így a jég a Földön is ismert I-es (hexagonális) fázis helyett VI-os (tetragonális) fázisban van, mely jégréteg alatt egy sziklás köpeny, illetve egy részben olvadt fémes mag található.

A Ganymedes felépítése. A két, eltérő sűrűségű jégréteg között a Naprendszer egyik legnagyobb óceánja lehet.
Forrás: Kelvinsong – Wikipedia; CC BY-SA 3.0

Akárcsak az Europa, úgy a Ganymedes hold is ideális feltételeket biztosít az élet kialakulása számára. Későbbi kutatások felfedték, hogy a hold mágneses terére, és így a sarki fényére is hatással vannak a felszín alatti tengeráramlatok, bizonyítva a nagy mennyiségű folyékony víz jelenlétét.

A Juno a későbbiekben a Jupiter két másik holdja, az Europa és az Io mellett is elrepül, mielőtt küldetése végéhez érne.

Bolygós rövidhírek: gyűrűs napfogyatkozás – a messzi Északon

Június 10-én gyűrűs napfogyatkozás lesz látható Európa, Észak-Amerika és Észak-Ázsia területén, a gyűrűs fogyatkozás sávja Északnyugat-Kanadán, az Északi-sarkon és Kelet-Szibérián halad át. Az esemény gyűrűs napfogyatkozás lesz, melynek során a földtávolban lévő Hold nem képes teljesen eltakarni a Napot, így csillagunk a totalitáskor egy gyűrű képében ragyog tovább.

A fogyatkozás Budapestről 12:04 és 13:27 közt lesz látható, a maximumot pedig 12:45-kor figyelhetjük meg. Az ország nyugati és keleti felén az időpontok néhány percet eltérnek. Forrás: Balázs Gábor/Stellarium/Parallaxis

Hazánkból a fogyatkozás mindössze 0,75-3,8%-os fázisú lesz, mely szabad szemmel nem/nagyon nehezen lesz érzékelhető. A Napot és a rajta lévő lévő apró “beharapást” kizárólag megfelelő napszűrővel vagy naptávcsővel nézzük! SOHA ne nézzünk távcsővel a Napba! A koncentrált fény- és hőhatás azonnali vakságot okoz!

A fogyatkozás láthatósága. Forrás: NASA

Bolygós rövidhírek: a Juno közelről is megvizsgálja a Ganymedest

CIKKÜNK FRISSÜLT!

Június 7-én a Juno űrszonda eddig páratlanul közel, 1038 kilométerre repül el a Jupiter legnagyobb holdja, az 5262 kilométeres Ganymedes mellett – számol be a NASA a Juno misszió oldalán. A fényképfelvételek mellett a Juno mélyebb betekintést nyújt a hold összetételébe, mágneses terébe, ionoszférájába és jégburkába.

A Ganymedes Jupiterrel átellenes féltekéje a Galileo űrszonda felvételén. (NASA/JPL)

“A Juno olyan érzékeny műszerek sorát foglalja magába, melyekkel úgy láthatjuk a Ganymedest, mint soha azelőtt” – fogalmazott Scott Bolton, a Southwest Research Institute munkatársa, a Juno fő kutatásvezetője. “Azzal, hogy ilyen közel repülünk el mellette, a Ganymedes kutatását XXI. századi szintre emeljük, kiegészítve a jövőbeli küldetéseket páratlan szenzorainkkal, és segítve a Jupiter-rendszerbe irányuló küldetések következő generációinak előkészítését.”

A Ganymedes geológiai térképei a NASA Voyager 1 és 2 űrszondáinak és a NASA Galileo űrszondájának legjobb rendelkezésre álló képeinek felhasználásával. Kép forrása: USGS Astrogeology Science Center/Wheaton/NASA/JPL-Caltech

A Juno műszerei már három órával a legnagyobb közelség előtt elkezdik az adatok gyűjtését. Az űrszonda ultraibolya spektrométerével (UVS), infravörös sarkifény-térképező műszerével (JIRAM) és mikrohullámú radiométerével (MWR) pillant a hold jégburka alá, új ismereteket gyűjtve az összetételéről és belső hőmérsékletéről.


UPDATE: június 8-án megérkeztek a Juno első képei a Ganymedesről:

A Ganymedes a Juno jún 7-ei felvételén. Kép forrása: NASA/JPL-Caltech/SwRI/MSSS

Bolygós rövidhírek: vulkánok lehetnek az Europa óceánja alatt

Szerző: Kovács Gergő

A Geophysical Research Letters-ben megjelent friss tanulmány szerint a Jupiter Europa holdja belsejében elégséges a hő tenger alatti vulkánok működtetéséhez, számol be a Phys.org. Egy új kutatás és számítógépes szimulációk szerint a hold jeges felszíne tekintélyes méretű óceánt rejteget, mely alatt a sziklás köpeny elég forró lehet ahhoz, hogy olvadt állapotban legyen. A modell szerint a legtöbb hő és így a legaktívabb vulkanizmus a hold pólusai közelében lehet.

A 2024-ben induló, az Europahoz 2030-ban megérkező Clipper. Forrás: NASA/JPL-Caltech

A NASA 2024-ben induló, és a holdat 2030-ban elérő Clipper űrszondája több alkalommal is igen közel fog elszáguldani az Europa mellett, hogy részletesen feltérképezze annak felszínét és megvizsgálja a hold ritka légkörét is. Ahogy az űrszonda feltérképezi a holdat, annak felszínét, gravitációs és mágneses mezejét, illetve az ezekben jelentkező anomáliákat, megerősítést kaphatunk a vízalatti vulkanizmus létéről.

Az Europa jégpáncélja alatt folyékony vízréteg, egy olvadt szilikátköpeny és egy vasmag található; az új kutatás segít megérteni, hogyan képes a belső hőtermelés működésben tartani a tenger alatti vulkánokat. Forrás: NASA/JPL-Caltech/Michael Carroll

Bár a Clipper nem egy életnyomok után kutató misszió, segít jobban megismerni az Europa fizikai felépítését, így képes alátámasztani azt a feltevést, hogy az égitest képes lehet-e az élet kialakulásához szükséges feltételeket biztosítani. Továbbá segít jobban megértetni az élet kialakulását saját bolygónkon, valamint útmutatást adni az életnyomok más égitesteken történő kereséséhez.

Bolygós rövidhírek: folyékony vizet találtak egy meteoritban

Szerző: Rezes Dániel

Japán, kínai és amerikai kutatók folyékony vizet azonosítottak egy primitív szenes kondrit meteoritban. A felfedezés nagyban hozzájárulhat a Naprendszer korai folyamatainak megértéséhez.

A víz gyakori összetevője a Naprendszernek, megjelenik többek között bolygónk felszínén, jégként a Holdon, valamint a Szaturnusz gyűrűiben és Enceladus nevű holdjának felszíne alatt is. Már korábbi tanulmányok is megmutatták, hogy a víz fontos szerepet játszott a Naprendszer kialakulásában és korai fejlődésében. Ennek a szerepnek a szélesebb körű vizsgálatára a kutatók megkíséreltek folyékony vizet találni extraterresztrikus anyagokban – így például meteoritokban – melyek legnagyobb része olyan kisbolygókból származik, melyek ebben a korai időszakban jöttek létre.

A fluidzárványokat tartalmazó Sutter’s Mill meteorit néhány darabja. Forrás: Wikipedia

A szakemberek már korábban is találtak szerkezetileg kötött hidroxilt és/vagy H2O molekulákat tartalmazó ásványokat meteoritokban, de folyékony vizet ezidáig nem. A víz ilyen formája csak bizonyos ásványokban jelen levő ún. fluidzárványok formájában maradhatott fenn. Ezekben a zárványokban jelen levő folyadék számos egyéb alkotót is tartalmazhat oldott formában, mely az egykori környezeti paramétereket jelzi.

A fluidzárványokat a kutatók a 2012-ben hullott Sutter’s Mill nevű, Mighei-típusú (CM) szenes kondritban található kalcit (trigonális kristályrendszerű kalcium-karbonát) kristályokban azonosították. A meteoritcsoport azért különleges, mivel anyaga igen primitív, forráségitestjük 4,6 milliárd éves, emellett vizes átalakuláson estek át a kisbolygón. A kutatók a vizsgálatokhoz olyan precíz vizsgálati módszereket alkalmaztak, mint a szinkrotron alapú röntgen nanotomográfia és a hűthető tárgyasztallal kiegészített transzmissziós elektronmikroszkópia.

A Sutter’s Mill SM33 nevű darabja. Forrás: GeoJack – Wikipedia; CC BY-SA 3.0

A vizsgálatok eredményeként egy olyan nanométeres (milliméter milliomodrésze) mérettartományba eső fluidzárványt azonosítottak kalcitkristályban, mely legalább 15% szén-dioxidot tartalmaz. A felfedezés megerősítette azt a feltételezést, miszerint a szenes kondritokban jelen levő kalcitkristályok nem csak folyékony vizet, de szén-dioxidot is megőrízhettek. A tanulmány publikálása előtt fluidzárványokat csak kevésbé primitív közönséges kondritokban található szenes kondrit anyagú törmelékekben található halit (kősó; köbös kristályrendszerű nátrium-klorid) kristályokban sikerült kimutatni.

A Sutter’s Mill meteoritban felfedezett, folyékony vizet tartalmazó fluidzárvány jelenlétéből érdekes következtetések vonhatóak le a szenes kondritos kisbolygó eredetére és a Naprendszer korai történetére vonatkozóan. Eszerint a meteorit szülőégitestjében a kőzetanyag fagyott víz és szén-dioxid jelenlétében állt össze. Ez a Naprendszernek csak azon részén következhetett be, mely kellően hideg volt a víz és a szén-dioxid szilárd halmazállapotban tartásához. Ilyen környezet valószínűleg a Jupiter pályáján túl létezhetett. Később a Jupiter instabilitása miatt a kisbolygó elindult a Naprendszer belső régiói felé, ahol darabjai beléptek a Föld légkörébe. Ez a feltételezés egybevág a napjainkban is elfogadott modellekkel. A felfedezés fontos mérföldköve a tudománynak. Az apró fluidzárvány vizsgálatával közelebb kerülhetünk tágabb környezetünk – a Naprendszer – kezdeti folyamatainak pontosabb megértéséhez.

Források:

[1] https://www.eurekalert.org/pub_releases/2021-04/ru-sfc042021.php

[2] Tsuchiyama, A., Miyake, A., Okuzumi, S., Kitayama, A., Kawano, J., Uesugi, K., Takeuchi, A., Nakano, T., & Zolensky, M. (2021). Discovery of primitive CO2-bearing fluid in an aqueously altered carbonaceous chondrite. Science Advances, 7(17), eabg9707.

Bolygós rövidhírek: a Szaturnusz magja nagyobb, mint sejtették

Szerző: Rezes Dániel

A Szaturnusz magja nem csak egy kőzetekből és jégből felépülő összlet – mint ahogy sok kutató elképzelte – hanem egy olyan kiterjedt képződmény, mely hatalmas mennyiségű hidrogént és héliumot is tartalmaz. Ezt figyelembe véve a mag átmérője ~70000 km, mely a bolygó átmérőjének ~60 százalékát teszi ki – állítja új tanulmányában két amerikai kutató.

A legújabb kutatás szerint a bolygó magja nagyobb a feltételezettnél. Fotó: NASA/JPL/SSI

Naprendszerünk hatodik bolygója – melynek átmérője Földünk átmérőjének kilencszerese – egyedülállóan káprázatos és komplex gyűrűrendszerével kitűnik a Naprendszer többi gázbolygója közül. Több, mint 60 ismert holdja kivételes kutatási lehetőséget teremt a szakemberek számára, sok titkot őriznek napjainkban is. Nehéz elképzelni, de a Szaturnusz az egyetlen olyan bolygó a Naprendszerben, melynek átlagos sűrűsége kisebb a víznél. Az égitestnek a Földhöz hasonló a tengelyferdesége, így a Szaturnuszon is kialakulnak évszakok.

A Szaturnusz és gyűrűje a Cassini felvételén. Fotó: NASA

A Szaturnusz magjának szerkezeti meghatározásához a csillagász-asztrofizikus kutatópáros az égitest gyűrűit vizsgálta meg. Ahogy a földrengések segítenek a szeizmológusoknak a Föld belsejének vizsgálatában, úgy a Szaturnusz rengései is feltárják az égitest szerkezetének rejtett részleteit. Ezek a rengések megváltoztatják a bolygó gravitációs erejét, mely hullámokat kelt a gyűrűrendszerben, főképpen az égitesthez a három fő gyűrű közül legközelebb elhelyezkedő C jelűben. Az ebben a gyűrűben haladó hullám vizsgálata és a már nem üzemelő Cassini űrszondának a Szaturnusz gravitációs mezejére vonatkozó adatai által a kutatók kiszámolták, hogy a bolygó magjában tömörülő kőzeteknek, jégnek, hidrogénnek és héliumnak az együttes tömege 55 földtömeg. Ez a Szaturnusz teljes tömegének (95 földtömeg) több, mint a felét jelenti.

A Szaturnusz és belső szerkezete méretarányosan, az eddigi ismereteink alapján. Forrás: Wikipedia/Kelvinsong; CC BY-SA 3.0

A két kutató következtetése a Szaturnusz magjára vonatkozóan megerősíti azt az újabb elméletet, mely szerint 4,6 milliárd éve, a mag kőzetek és jég általi összeállásakor nagy mennyiségű gáz is jelen volt a rendszerben. Ahogy a mag további anyaggal gyarapodott, a gázból álló hányad felemelkedett. Emellett az eredmények arra a régi talányra is választ adhatnak, hogy a Szaturnusz miért bocsát ki több energiát annál, mint amennyit a Naptól kap. A bolygó rengéseinek típusa ugyanis arról árulkodik, hogy az égitest magja relatíve stabil.

Az új megfigyelések és felismerések nem csak azt segíthetnek megérteni, hogy hogyan keletkeztek a Naprendszer hatalmas gázbolygói, hanem a más csillagok körül keringő hasonló égitestek természetéről is tanúskodnak. A tanulmány eredményeinek megerősítéséhez a jövőben a gyűrűk további hullámainak vizsgálata szükséges.

Források:
[1] https://www.sciencenews.org/article/saturn-planet-core-fuzzy-ring-astronomy-space?fbclid=IwAR38pUCN1xdSL17hOkE1RjEdlYKM_1yDwQSHq-zrC2H1Mq9PM0jJuIEGbh4
[2] Mankovich, C., & Fuller, J. (2021). A diffuse core in Saturn revealed by ring seismology. arXiv preprint arXiv:2104.13385.
[3] https://solarsystem.nasa.gov/planets/saturn/in-depth/

Bolygós rövidhírek: volt-e valaha a Napnak „csillagtestvére”?

Szerző: Gombai Norbert

Dr. Avi Loeb csillagász, és Amir Siraj egyetemi hallgató a Harvard Egyetemről erre a kérdésre keresik a választ. 2020. augusztusában, a The Astrophysical Journal Letters című tudományos folyóiratban közzétett elméletük szerint elképzelhető, hogy központi csillagunknak a régmúltban volt egy hasonló tömegű kettős kísérője, amely ugyanabból a sűrű molekuláris gázfelhőből alakulhatott ki, mint a Nap.

De miért fontos és érdekes ez az elmélet? Persze azon kívül, hogy nagyon menő volna kikönyökölni a teraszra és a kettős naplementében gyönyörködni, hasonlóan a Csillagok Háborúja ikonikus jelenetéhez.

A kulcs az Oort-felhőben rejlik, illetve annak kialakulásában. Miért és hogyan alakult ki a Naprendszer távoli, külső peremén elhelyezkedő, sok milliárdnyi jeges szikladarabból és üstökösből álló törmelékfelhő?

Az Oort-felhő távolsága Napunktól Csillagászati Egységekben – a távolságot jelző vízszintes skála logaritmikus

Az általánosságban elfogadott elmélet szerint az Oort-felhő annak a protoplanetáris korongnak a maradványa, amelyből a Naprendszer égitestjei is képződtek. A felhő az elképzelések szerint két részből áll. A korong alakú belső felhőből, amelynek modelljét Jack G. Hills csillagász vetette fel saját, üstökös kutatási eredményeire alapozva a 80-as évek elején (a belső felhőt ezért Hills-felhőnek is nevezünk), valamint egy gömbszimmetrikus, úgynevezett külső Oort-felhőből. Az Oort-felhő belső pereme a Naptól kb. 2.000 CSE (1 csillagászati egység = Föld-Nap távolság, nagyjból 150 millió km) távolságban helyezkedik el, míg külső pereme kb. 10.000 CSE (egyes elképzelések szerint akár 100.000 CSE) távolságra tehető. Csak az összehasonlítás kedvéért a Plutó 30-50 CSE távolságra kering a központi csillagtól. Az Oort- felhőt alkotó főleg  víz-, metán- és etánjégből álló üstökösmagok és egyéb objektumok eredetileg a Naphoz sokkal közelebb jöttek létre, mígnem a nagybolygók gravitációs kölcsönhatásainak köszönhetően elnyújtott elliptikus, vagy parabolikus pályára álltak, a Naprendszer távoli vidékei felé lökődtek ki, olykor elhagyva a Nap gravitációs vonzáskörzetét. Az Oort-felhőt az azt alkotó objektumok közötti igen gyakori ütközések, a közeli csillagok gravitációs hatásai, átvonulásai, valamint a galaktikus ár-apály hatások is alakították.

Az Oort-felhő becsült távolsága a belső Naprendszerhez képest

A probléma ezzel a modellel az, hogy nem képes megnyugtatóan megmagyarázni a belső és külső Oort-felhő közötti anyageloszlás arányát. Loeb és Siraj szerint amint bevezetjük egy korai csillag-kísérő jelenlétét a modellbe nem csak közelebb kerülünk a megfigyelt állapothoz, de további érdekes kérdésekre is válaszokat kaphatunk.

Megfigyelési tapasztalatok szerint a Naphoz hasonló csillagok többnyire kettős rendszerekben fordulnak elő. A számítási modellek szerint a kettős csillagrendszerek sokkal hatékonyabbak az objektumok befogásában, mint az egyedülálló csillagok. Ha az elmélet helytálló és bizonyítást nyerne, hogy az Oort-felhő valóban egy korai Nap-kísérő csillag segítségével keletkezett, az jelentős következményekkel járna a Naprendszer kialakulásának eddig elfogadott elméletére vonatkozólag. Sőt, érdekes válaszokat adhatna az élet kialakulásával kapcsolatos kérdésekre is, hiszen az Oort-felhőben levő üstökösök jelentős szerepet játszhattak a Földi élet megjelenésében, például vizet és szállíthattak bolygónkra, vagy éppen a dinoszauruszok kihalását okozták.

Mi több, az elmélet hatással lehet a sokat emlegetett Kilencedik bolygó hipotézisre is. Egy, a Pluto pályáján túl keringő, akár Neptunusz méretű eleddig felfedezetlen égitestre, amelynek létezésére csak a Kuiper-öv bizonyos objektumainak egyedi pályaadataiból következtethetünk.

Természetesen az Oort-felhővel és a hipotetikus Kilencedik bolygóval (és lehetséges kísérőivel) kapcsolatos felvetések csak további megfigyelések útján nyerhetnek bizonyítást. A közvetlen fotografikus megfigyelések meglehetősen nagy kihívást jelentenek a csillagászok számára az óriási távolság, a hatalmas vizsgálandó terület, valamint a cél objektumok természete miatt. Mindazonáltal a chilei Vera C. Rubin Obszervatórium 8,4 m-es teleszkópja várhatóan idén megkezdi a Legacy Survey of Space and Time nevű programját, amelyben a tervek szerint a teljes, a távcső számára elérhető déli égboltot többször is lefényképezik. A megfigyelési program főbb céljai között – egyebek mellett – szerepel a Naprendszer kisebb égitestjeinek feltérképezése, különös tekintettel a Föld-közeli aszteroidákra (NEA) és Kuiper-övben található objektumokra (KBO), valamint a már említett Kilencedik bolygó utáni kutatás is. Az LSST felmérésnek köszönhetően várhatóan 10-szeresére, akár 100-szorosára is megnőhet az azonosított és katalogizált objektumok száma.

Jogosan tehetjük fel a kérdést: ha Napunknak tényleg volt egy kísérő csillaga, akkor hová lett? Miért nem élvezhetjük a kettős naplementét a Balaton partján? Loeb és Siraj azt feltételezik, hogy a keletkezési csillaghalmazban elhaladó egyéb csillagok gravitációs hatása szétszakította a Nap és kísérője közötti kapcsolatot és évmilliárdokkal ezelőtt kirepítette központi csillagunk párját a galaktikus térbe. A Nap rég elveszett társa mára már bárhol lehet a Tejútrendszerben.

Bolygós rövidhírek: felfedezték az Uránusz első röntgensugarait

Szerző: Rezes Dániel

A NASA („National Aeronautics and Space Administration”, Nemzeti Repülési és Űrhajózási Hivatal) Chandra űrtávcsőjét (CXO, „Chandra X-Ray Observatory”) használó csillagászok először detektálták az Uránuszról érkező röntgensugarakat. Ez a fontos felfedezés a jövőben a kutatók segítségére lehet a Naprendszer eme hatalmas gázbolygójának részletesebb megértésében.

A Föld és az Uránusz méretének összehasonlítása. Forrás: NASA

Naprendszerünk hetedik bolygója – melynek átmérője Földünk átmérőjének négyszerese – a többi bolygótól jelentősen eltérő tulajdonsággal rendelkezik. Ez a jellegzetesség a Nap körüli keringés síkjának és a bolygó forgástengelyének egymáshoz viszonyított szögében keresendő. Az Uránusz esetében ez a szög közel 90°, így a bolygó látszólag az oldalán fekve forog Nap körüli keringése során. Ezt a szokatlan sajátságot valószínűleg egy Föld-méretű égitesttel történt ősi ütközés során szerezte. A kis méretű kőzetmaggal rendelkező gázbolygót majdnem teljes egészében hidrogén és hélium építi fel, jellegzetes zöldeskék színét a légkörében található metántól nyeri el. Az Uránusz gyűrűrendszere két részre bontható és 27 ismert holddal is rendelkezik.

Sarki fények az Uránuszon. Forrás: ESA/Hubble; CC BY 4.0

Mivel az egyetlen, Uránusz mellett elhaladó űreszköz a Voyager-2 volt, ezért a csillagászoknak a Föld közelében található Chandra és Hubble űrtávcsövekre kell hagyatkozniuk a gázbolygó tanulmányozása során. Az új tanulmányban a kutatók a Chandra 2002-es és 2017-es megfigyeléseit használták fel. Az első megfigyelés kiértékelésénél tisztán észlelték a röntgensugarakat, míg utóbbinál egy valószínűsített röntgensugár flare (kitörés) is látható.
Felmerül azonban a kérdés, hogy mi okozza az Uránusz röntgensugár-kibocsátását? A csillagászok már korábban megfigyelték, hogy a Szaturnusz és a Jupiter is kibocsát röntgensugárzást, melynek okozójaként a Napot azonosították. A folyamat hasonlít ahhoz, amikor a földi légkör szórja a beérkező napsugárzást. Azonban ez a jelenség nem az egyedüli okozója az Uránusznál megfigyelt röntgensugárzásnak, a feltételezés szerint legalább még egy forrásból ered ilyen hullámhosszú sugárzás. Ennek a forrásnak a felderítésével a bolygó megértésére vonatkozó fontos következtetéseket lesznek képesek levonni a kutatók.

Közeli infravörösben készült hamisszínes fotó az Uránuszról. Forrás: NASA/Hubble

Az Uránusz röntgensugarainak további forrására ezidáig két lehetőség született. Az egyik szerint a Szaturnusz gyűrűihez hasonlóan az Uránusz gyűrűi is képesek röntgensugárzás kibocsátására. Ez a folyamat úgy zajlik, hogy a bolygó közvetlen űrbéli környezetében található töltött részecskék (pl. elektronok, protonok) ütköznek a gyűrű anyagával, melynek következménye a röntgensugárzás kibocsátása. Emellett egy másik lehetséges forrás az Uránusznál is tapasztalható aurora jelenség. Ez a folyamat hasonlít a Földön megfigyelt sarki fényhez, azonban fontos különbség, hogy bolygónkon más a kibocsátott sugárzás hullámhossz-tartománya. A földi sarki fény akkor keletkezik, amikor a világűrből érkező, nagy energiájú elektronok a Föld mágneses erővonalai mentén a sarkok felé gyűjtődnek és a légkörben lelassulnak. A jelenség a Jupiternél is hasonló, azonban az Uránusz esetében nem tisztázott egyértelműen.
Az Uránusz a többi naprendszerbeli bolygóhoz képest különleges feltételeket kínál a röntgensugárzás vizsgálatára szokatlan tengelyferdesége és mágneses mezője révén. Ezek a tulajdonságok rendhagyóan komplex és változatos aurora-jelenség létrejöttét tették lehetővé ezen a hatalmas gázbolygón. Az Uránusz röntgensugarainak és azok forrásainak vizsgálata a jövőben lehetőséget teremt az Univerzum megannyi különleges objektumának (pl. növekvő fekete lyukak, neutroncsillagok) megértésére. Ehhez pedig a csillagászok hűséges társa a Chandra űrtávcső.

Források:
[1] https://www.nasa.gov/mission_pages/chandra/images/first-x-rays-from-uranus-discovered.html
[2] Dunn, W. R., Ness, J. U., Lamy, L., Tremblay, G. R., Branduardi‐Raymont, G., Snios, B., Kraft, R. P., Yao, Z., & Wibisono, A. D. (2021). A Low Signal Detection of X‐Rays From Uranus. Journal of Geophysical Research: Space Physics, 126(4), e2020JA028739., 11 p.
[3] https://solarsystem.nasa.gov/planets/uranus/in-depth/

Bolygós rövidhírek: rádiójelek a Vénusz felső légköréből

Szerző: Gombai Norbert

Lassan 3 éve, hogy 2018. augusztus 12-én útjára indult a NASA „Parker Solar Probe” nevű nap-szondája a floridai Cape Canaveral egyik kilövőállásáról. A szonda célja a Nap felső légkörének minden eddiginél alaposabb vizsgálata. A tervek szerint a napfelszíntől 6,12 millió km-re (több, mint hétszer közelebb, mint bármilyen korábbi űreszköz), közel 1 400 C fokos hőségben önállóan dolgozó szerkezet különböző méréseket végez és megfigyeli majd azokat az energiaáramlási folyamatokat, melyek a napkorona magas hőmérsékletét okozhatják, valamint a napszelet befolyásolják.  Annak érdekében, hogy a szerkezet a megfelelő sebességre gyorsulva elég közel tudjon kerülni a központi csillagunkhoz a Parker Solar Probe hét alkalommal elrepül a Vénusz bolygó mellett, a gyorsításhoz kihasználva annak gravitációs erejét.

A Vénusz, ahogy a Parker Solar Probe látta 2020. júl. 11-én, 12 000 km távolságból. A csíkok a felvételen a bolygóközi térben repülő apró porszemcsék. Az égitest közepén lévő sötét folt az Aphrodite Terra, a Vénusz legnagyobb magasföldje.
Fotó: NASA/Johns Hopkins APL/Naval Research Laboratory/Guillermo Stenborg and Brendan Gallagher

A legutóbbi „hintamanőver” közben mintegy 833 km-rel a Vénusz felszín felett repülve a Parker FIELDS nevű – a Nap elektromos és mágneses mezőit vizsgáló – műszere 7 percen keresztül alacsony frekvenciájú, természetes eredetű – az emberi fülnek meglehetősen kísértetiesnek ható – rádiójeleket észlelt. Gly Collinson (NASA’s Goddard Space Flight Center) felismerte, hogy az észlelt jelek rendkívül hasonlóak a korábbi, a Jupitert és holdjait vizsgáló Galileo NASA misszióban gyűjtött eredményekkel, amikor a Galileo szonda keresztül repült a Jupiter-holdak külső légkörein.

A Földhöz hasonlóan a Vénusz is rendelkezik ionoszférával, egy elektromosan töltött vékony gázréteggel  a felső légkörében. Az ionoszféra rádióhullámokat bocsát ki, amelyeket arra alkalmas eszközzel – mint a Parker FIELDS műszere – érzékelni lehet. A NASA kutatói legutóbb 1992-ben végeztek méréseket a Vénusz felső atmoszférájában, köszönhetően a Pioneer Venus Orbiter szondának. Abban az időben a Nap ciklusa maximumának közelben volt. A következő években földi távcsöves megfigyelések bizonyították, hogy a Vénusz ionoszférája jelentősen elvékonyodott, ahogy a naptevékenység egy nyugodtabb szakaszba lépett.

A Parker Solar Probe legutóbbi bolygóközeli manővere a napminimum után hat hónappal történt. A szonda által érzékelt rádiósugárzás alapján a kutatók kiszámolták az ionoszféra sűrűségét. Az eredmények alátámasztják a feltételezést, hogy a napciklus közvetlen hatással van a bolygó felső légkörének állapotára.

Bolygós rövidhírek: orosz-kínai kisbolygó- és üstökösmisszió

Szerző: Rezes Dániel

Kína bejelentette, hogy orosz műszerekkel is felszerelve indítja útjára következő űreszközét. A küldetés első célja a Kamo’oalewa nevű földközeli aszteroidán történő mintavételezés lesz. A begyűjtött anyagot az űreszköz először kapszulában visszajuttatja a Földre, majd a földi gravitációs mezőt kihasználva elindul második úticélja felé, mely a Mars és a Jupiter pályája közötti Kisbolygóövben keringő 133P/Elst–Pizarro üstökös lesz. Utóbbi utazás hét évet fog felölelni.

A Kínai Nemzeti Űrügynökség (CNSA, „China National Space Administration”) által 2019-ben kiírt pályázatot az Orosz Tudományos Akadémia Űrkutatási Intézete nyerte, így az általuk gyártott eszközökkel csatlakozhatnak a ZhengHe névre keresztelt többcélú küldetéshez. Az űreszköz nevét egy kora 15. századbeli híres kínai tengeri felfedezőről kapta. A ZhengHe a feladataihoz szükséges műszerek széles palettáját fogja szállítani. Ilyen eszközök a hagyományos és multispektrális kamerák, spektrométerek, radar, magnetométer és különböző részecskedetektorok.

A Kamoʻoalewa pályája a belső Naprendszerben.
Forrás: Wikipedia (Tomruen); CC BY-SA 4.0

Az első objektum, a Kamoʻoalewa vagy más néven 2016 HO3 kisbolygó – melynek hawaii neve oszcilláló mozgást végző égitestre utal – kevesebb, mint 100 méter hosszúságú és csak 2016-ban fedezték fel. Jelenleg ez a legkisebb, legközelebbi és legstabilabb olyan „kvázi-holdja” a Földnek, mely folyamatosan kering bolygónk körül, azonban túl távol található, hogy hagyományosan holdnak nevezhessük, ugyanis maximális távolsága 100-szoros holdtávolság.

A második objektum, az 1996-ban Eric Walter Elst és Guido Pizarro által felfedezett 133P/Elst–Pizarro üstökös, melyet szokatlan kisbolygóövi helyzete miatt gyakran aszteroidaként is besoroltak. Ezzel ellentétben üstökösként porból és gázból álló csóvája is megfigyelhető. Ez a kettős természet jellemzi a nemrég felfedezett kisbolygóövi üstökösöket (MBCs, „Main Belt Comets”), melybe a 133P/Elst–Pizarro is tartozik.

A 133P/Elst–Pizarro az ESO 1 méter átmérőjű Schmidt-teleszkópjával.
Forrás: ESO; Wikipedia; CC BY 4.0

A kooperációban végrehajtott küldetés célja, hogy információt szolgáltasson a naprendszerbeli kis égitestek képződésére és fejlődésére, a „kvázi-holdak” eredetére és mozgásukra, valamint az MBC-k tulajdonságaira, különös tekintettel a vízre és más illók jelenlétére vonatkozóan. Oroszország és Kína ezzel a 2024-re tervezett küldetéssel bővíti a hosszú ideje fennálló kölcsönös űrrepülési együttműködését.

Források:
[1] https://www.space.com/russia-joins-china-asteroid-comet-mission?fbclid=IwAR17cV6CMuN4gO9zlVA8typkmJQY4Lu_ELn0fF0lT3UnobFN6qyQ8f6HFcs
[2] https://www.nature.com/articles/d41586-019-01390-5
[3] https://en.wikipedia.org/wiki/469219_Kamo%CA%BBoalewa
[4] https://www.hou.usra.edu/meetings/lpsc2019/pdf/1045.pdf
[5] https://en.wikipedia.org/wiki/7968_Elst%E2%80%93Pizarro